Skip to main content
Log in

Using a cylindrical piezoelectric transducer to focus ultrasound in superfluid helium

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Ultrasound in bulk liquid and superfluid helium has been used for multiple studies, including generation of quantum turbulence, and inducing homogenous or heterogenous cavitation. Both hemispherical and planar ultrasonic transducers have been used in the past, which optimize the focusing volume and the degree of focusing. In this paper, we demonstrate the application of a cylindrical piezoelectric transducer to achieve a linear focusing configuration. We have developed a new method to calibrate the pressure generated by the ultrasonic transducer, where we measured the threshold ultrasound drive at which mist was observed. The results were compared with those from a hemispherical geometry. The linear focusing configuration was further demonstrated to observe the cavitation of single electron bubbles arranged in a linear array. Our experiments are relevant to studies in liquid helium that require large pressure oscillations in controlled volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The manuscript has data (video files) included as electronic supplementary material.

References

  1. J.A. Nissen, E. Bodegom, L.C. Brodie, J.S. Semura, Phys. Rev. B 40, 6617 (1989)

    Article  ADS  Google Scholar 

  2. Q. Xiong, H.J. Maris, J. Low Temp. Phys. 82, 105 (1991)

    Article  ADS  Google Scholar 

  3. F. Caupin, S. Balibar, H.J. Maris, Phys. B Condens. Matter 329–333, 356–359 (2003)

    Article  ADS  Google Scholar 

  4. M.S. Pettersen, S. Balibar, H.J. Maris, Phys. Rev. B 49, 12062 (1994)

    Article  ADS  Google Scholar 

  5. F.P. Milliken, K.W. Schwarz, C.W. Smith, Phys. Rev. Lett. 48, 1204 (1982)

    Article  ADS  Google Scholar 

  6. R.F. Carey, J.A. Rooney, C.W. Smith, Phys. Lett. 65A, 311 (1978)

    Article  ADS  Google Scholar 

  7. N. Yadav, V. Vadakkumbatt, H.J. Maris, A. Ghosh, J. Low Temp. Phys. 187, 618 (2017)

    Article  ADS  Google Scholar 

  8. N. Yadav, V. Vadakkumbatt, A. Ghosh, J. Low Temp. Phys. 201, 97 (2020)

    Article  ADS  Google Scholar 

  9. N. Yadav, P. Sen, A. Ghosh, Sci. Adv 1, (2021)

  10. Y. Xing, H.J. Maris, J. Low Temp. Phys. 202, 399 (2021)

    Article  ADS  Google Scholar 

  11. D. Konstantinov, H.J. Maris, Phys. Rev. Lett. 90, 3 (2003)

    Article  Google Scholar 

  12. A. Ghosh, H. Maris, J. Low Temp. Phys. 134, 251 (2004)

    Article  ADS  Google Scholar 

  13. A. Ghosh, H.J. Maris, Phys. Rev. B Condens. Matter Mater. Phys. 72, 054512 (2005)

    Article  ADS  Google Scholar 

  14. H.J. Maris, A. Ghosh, D. Konstantinov, M. Hirsch, J. Low Temp. Phys. 134, 227 (2004)

    Article  ADS  Google Scholar 

  15. J. Classen, C.-K. Su, M. Mohazzab, H.J. Maris, Phys. Rev. B 57, 3000 (1998)

    Article  ADS  Google Scholar 

  16. J. Classen, C.-K. Su, H.J. Maris, Phys. Rev. Lett. 77, 2006 (1996)

    Article  ADS  Google Scholar 

  17. A. Ghosh, H.J. Maris, Phys. Rev. Lett. 95, 265301 (2005)

    Article  ADS  Google Scholar 

  18. Y. Yang, S. Sirisky, W. Wei, G.M. Seidel, H.J. Maris, J. Low Temp. Phys. 192, 48 (2018)

    Article  ADS  Google Scholar 

  19. W. Guo, D. Jin, G. M. Seidel, H.J. Maris, Phys. Rev. B Condens. Matter Mater. Phys. 79, 054515 (2009)

    Article  ADS  Google Scholar 

  20. J. Beamish, S. Balibar, Rev. Mod. Phys. 92, 045002 (2020)

    Article  ADS  Google Scholar 

  21. A. Haziot, X. Rojas, A. D. Fefferman, J. R. Beamish, S. Balibar, Phys. Rev. Lett. 110, 035301 (2013)

    Article  ADS  Google Scholar 

  22. V. Vadakkumbatt, E. Joseph, A. Pal, A. Ghosh, Nat. Commun. 5, (2014)

  23. N. Yadav, P.K. Rath, Z. Xie, Y. Huang, A. Ghosh, J. Low Temp. Phys. 201, 658 (2020)

    Article  ADS  Google Scholar 

  24. N. Yadav, Y. Huang, A. Ghosh, Phys. Rev. B 102, 054509 (2020)

    Article  ADS  Google Scholar 

  25. W. Guo, H.J. Maris, J. Low Temp. Phys, 148, 199–206 (2007)

  26. H.T. O’Neil, J. Acoust. Soc. Am. 21, 516 (1949)

    Article  ADS  Google Scholar 

  27. H. Kim, K. Seo, B. Tabbert, G.A. Williams, J .Low Temp. Phys. 121, 621 (2000)

    Article  Google Scholar 

  28. H. Kim, K. Seo, B. Tabbert, G.A. Williams, Europhys. Lett. 58, 395 (2002)

    Article  ADS  Google Scholar 

  29. C.L. Goodridge, W.T. Shi, D.P. Lathrop, Phys. Rev. Lett. 76, 1824 (1996)

    Article  ADS  Google Scholar 

  30. C.L. Goodridge, W.T. Shi, H.G.E. Hentschel, D.P. Lathrop, Phys. Rev. E 56, 472 (1997)

    Article  ADS  Google Scholar 

  31. B. Vukasinovic, M.K. Smith, A. Glezer, Phys. Fluids 19, 012104 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shriganesh Neeramoole or Ambarish Ghosh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 60609 KB)

Supplementary file2 (AVI 37182 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, D., Neeramoole, S., Yadav, N. et al. Using a cylindrical piezoelectric transducer to focus ultrasound in superfluid helium. Eur. Phys. J. Spec. Top. 232, 949–955 (2023). https://doi.org/10.1140/epjs/s11734-023-00764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00764-1

Navigation