Skip to main content
Log in

Analysis of geometrical shape impact on thermal management of practical fluids using square and circular cavities

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The heating or cooling performance of convective thermal systems is critically dependent upon their geometrical shapes/configurations apart from other controlling aspects. Here, an effort is made to address the shape impact on thermal performance, using square and circular systems under the classical differentially heating configuration. The comparison of systems’ performance is made by applying the constraints of identical fluid volume, heating and cooling surfaces, and cavity inclinations for both systems. The study covers mostly used practical working fluids namely air, water, and a water-based nanofluid. For such a type of thermal system analysis, the numerical approach is chosen appropriately to generate a huge volume of the solved results. The Prandtl number, Rayleigh number, the nanofluid concentration, and cavity orientation are used as the system parameters, and the study reveals a strong impact of the cavities’ shapes. In general, the thermal performance and evolved circulation (due to the differential heating) are found superior with the circular cavity over its equivalent square cavity configuration. The analysis confirms that the geometric modification is a better choice for achieving superior heat transfer; the heat transfer enhancement could be up to \(\sim 22.21{\%}\) (when the cavity is horizontal), 24.11% (with inclined cavity) with air as a working medium. There is a further enhancement on heat transfer with the modified circular cavity up to 2.76% (with horizontal cavity), 15.19% (with inclined cavity) using nanofluid. The heat flow dynamics from the heating side to the cooling side are also explored using the Bejan’s heatlines. The outcome of this study will help the designer to model the thermal device considering various controlling aspects from an appropriate thermal management point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data

The data that support the findings of this study are available from the corresponding author upon request.

Abbreviations

\(C_{P}\) :

Specific heat of fluid (J \(\hbox {kg}^{-1}\, \hbox {K}^{-1})\)

g :

Acceleration due to gravity (m \(\hbox {s}^{-2})\)

H :

Cavity height/length scale (m)

k :

Thermal conductivity (W \(\hbox {m}^{-1}\, \hbox {K}^{-1})\)

Ha:

Hartmann number

Nu:

Average Nusselt number

P :

Dimensionless pressure

Pr:

Prandtl number

Ra:

Rayleigh number

T :

Temperature (K)

u,v :

Velocity components (m \(\hbox {s}^{-1})\)

U, V :

Dimensionless velocity components

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless coordinates

\(\alpha \) :

Thermal diffusivity (\(\hbox {m}^{2}\, \hbox {s}^{-1})\)

\(\beta \) :

Thermal expansion coefficient (\(\hbox {K}^{-1})\)

\(\theta \) :

Dimensionless temperature

\(\mu \) :

Dynamic viscosity(Nm \(\hbox {s}^{-2})\)

\(\nu \) :

Kinematic viscosity (\(\hbox {m}^{2}\, \hbox {s}^{-1})\)

\(\rho \) :

Density (kg \(\hbox {m}^{-3})\)

\(\zeta \) :

Nanoparticle volume fraction

\(\psi \) :

Dimensionless stream function

c :

Cold

f :

Base fluid

h :

Hot

max :

Maximum

min :

Maximum

r :

Property ratio

s :

Solid

References

  1. Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013)

    Article  Google Scholar 

  2. D. Das, M. Roy, T. Basak, Studies on natural convection within enclosures of various (non-square) shapes—a review. Int. J. Heat Mass Transf. 106, 356–406 (2017)

    Article  Google Scholar 

  3. U.K. Sarkar, N. Biswas, H.F. Öztop, Multiplicity of solution for natural convective heat transfer and entropy generation in a semi-elliptical enclosure. Phys. Fluids 33, 013606 (2021)

    Article  ADS  Google Scholar 

  4. A. Rahimi, A.D. Saee, A. Kasaeipoor, E.H. Malekshah, A comprehensive review on natural convection flow and heat transfer: the most practical geometries for engineering applications. Int. J. Numer. Methods Heat Fluid Flow 29(3), 834–877 (2019)

    Article  Google Scholar 

  5. N. Biswas, P.S. Mahapatra, N.K. Manna, Merit of non-uniform over uniform heating in a porous cavity. Int. Commun. Heat Mass Transf. 78, 135–144 (2016)

    Article  Google Scholar 

  6. N. Biswas, N.K. Manna, Transport phenomena in a sidewall-moving bottom-heated cavity using heatline. Sadhana 42(2), 193–211 (2017)

    Article  MathSciNet  Google Scholar 

  7. A.A. Hussien, W. Al-Kouz, M.E. Hassan, A.A. Janvekar, A.J. Chamkha, A review of flow and heat transfer in cavities and their applications. Eur. Phys. J. Plus 136, 353 (2021)

    Article  Google Scholar 

  8. O. Aydin, G. Yesiloz, Natural convection in a quadrantal cavity heated and cooled on adjacent walls. J. Heat Transf. 133(5), 052501–052507 (2011)

    Article  Google Scholar 

  9. N. Biswas, N.K. Manna, A.J. Chamkha, Magneto-thermal convection in typical thermal cavities with aspiration. SN Appl. Sci. 2(1911), 1–25 (2020)

    Google Scholar 

  10. O. Ostrach, Natural convection in enclosures. J. Heat Transf. 110, 1175–1190 (1988)

    Article  Google Scholar 

  11. L. Lukose, T. Basak, Numerical heat flow visualization analysis on enhanced thermal processing for various shapes of containers during thermal convection. Int. J. Numer. Methods Heat Fluid Flow 30(7), 3535–3583 (2020)

  12. F.P. Incropera, Convection heat transfer in electronic equipment cooling. J. Heat Transf. 110, 1097–1111 (1988)

    Article  ADS  Google Scholar 

  13. D. Das, T. Basak, Role of distributed/discrete solar heaters for the entropy generation studies in the square and triangular cavities during natural convection. Appl. Therm. Eng. 113, 1514–1535 (2017)

    Article  Google Scholar 

  14. N. Biswas, P.S. Mahapatra, N.K. Manna, Thermal management of heating element in a ventilated enclosure. Int. Commun. Heat Mass Transf. 66, 84–92 (2015)

    Article  Google Scholar 

  15. N. Biswas, P.S. Mahapatra, N.K. Manna, Enhanced convective heat transfer in lid-driven porous cavity with aspiration. Int. J. Heat Mass Transf. 114, 430–452 (2017)

    Article  Google Scholar 

  16. H. Hamzah, A. Albojamal, B. Sahin, K. Vafai, Thermal management of transverse magnetic source effects on nanofluid natural convection in a wavy porous enclosure. J. Therm. Anal. Calorim. 143, 2851–2865 (2021)

    Article  Google Scholar 

  17. N. Biswas, P.S. Mahapatra, N.K. Manna, Buoyancy-driven fluid and energy flow in protruded heater enclosure. Meccanica 51, 2159–2184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Dutta, N. Goswami, A.K. Biswas, S. Pati, Numerical investigation of magnetohydrodynamic natural convection heat transfer and entropy generation in a rhombic enclosure filled with Cu-water nanofluid. Int. J. Heat Mass Transf. 136, 777–798 (2019)

    Article  Google Scholar 

  19. M. Ghalambaz, M. Sabour, S. Sazgara, I. Pop, R. Trâmbitas, Insight into the dynamics of ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) nanofluids inside a hexagonal cavity in the presence of a non-uniform magnetic field. J. Magn. Magn. Mater. 497, 166024 (2020)

    Article  Google Scholar 

  20. A.S. Dogonchi, M.A. Sheremet, I. Pop, D.D. Ganji, MHD natural convection of Cu/H\(_{2}\)O nanofluid in a horizontal semi-cylinder with a local triangular heater. Int. J. Numer. Methods Heat Fluid Flow 28(12), 2979–2996 (2018)

    Article  Google Scholar 

  21. O. Mahian, A. Kianifar, C. Kleinstreuer, M.A. Al-Nimr, I. Pop, A.Z. Sahin, S. Wongwises, A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

    Article  Google Scholar 

  22. A. Rahimi, A.D. Saee, A. Kasaeipoor, E.H. Malekshah, A comprehensive review on natural convection flow and heat transfer: the most practical geometries for engineering applications. Int. J. Numer. Methods Heat Fluid Flow 29(3), 834–877 (2019)

    Article  Google Scholar 

  23. H.F. Ali, Hybrid Nanofluids for Convection Heat Transfer, 1st edn. (Academic Press, Elsevier, 2020)

    Google Scholar 

  24. N. Biswas, A.J. Chamkha, N.K. Manna, Effects of half-sinusoidal nonuniform heating during MHD thermal convection in Cu-Al\(_{2}\)O\(_{3}\)/water hybrid nanofluid saturated with porous media. J. Therm. Anal. Calorim. 143, 1665–1688 (2021)

    Article  Google Scholar 

  25. N. Biswas, U.K. Sarkar, A.J. Chamkha, N.K. Manna, Magneto-hydrodynamic thermal convection of Cu-Al\(_{2}\)O\(_{3}\)/water hybrid nanofluid saturated porous media subjected to half-sinusoidal non-uniform heating. J. Therm. Anal. Calorim. 143, 1727–1753 (2021)

    Article  Google Scholar 

  26. M. Ghalambaz, S.A.M. Mehryan, E. Izadpanahi, A.J. Chamkha, D. Wen, MHD natural convection of Cu-Al\(_{2}\)O\(_{3}\) water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–1743 (2019)

    Article  Google Scholar 

  27. N.K. Manna, N. Biswas, Magnetic force vectors as a new visualization tool for MHD convection. Int. J. Therm. Sci. 167, 107004 (2021)

    Article  Google Scholar 

  28. J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)

    Article  Google Scholar 

  29. N.K. Manna, C. Mondal, N. Biswas, U.K. Sarkar, H.F. Öztop, N.H. Abu-Hamdeh, Effect of multibanded magnetic field on convective heat transport in linearly heated porous systems filled with hybrid nanofluid. Phys. Fluids 33, 053604 (2021)

    Article  ADS  Google Scholar 

  30. A.E. Kabeel, E.M.S. El-Said, S.A., A review of magnetic field effects on flow and heat transfer in liquids: present status and future potential for studies and applications. Renew. Sustain. Energy Rev. 45, 830–837 (2015)

  31. S.O. Giwa, M. Sharifpur, M.H. Ahmadi, J.P. Meyer, A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J. Therm. Anal. Calorim. 145, 2581–2623 (2021)

    Article  Google Scholar 

  32. N.K. Manna, M.K. Mondal, N. Biswas, A novel multi-banding application of magnetic field to convective transport system filled with porous medium and hybrid nanofluid. Phys. Scr. 96, 065001 (2021)

    Article  ADS  Google Scholar 

  33. A. Bejan, I. Dincer, S. Lorente, A.F. Miguel, A.H. Reis, Porous and Complex Flow Structures in Modern Technologies (Springer, New York, 2004)

    Book  Google Scholar 

  34. N. Biswas, N.K. Manna, D.K. Mandal, R.S.R. Gorla, Magnetohydrodynamic mixed bioconvection of oxytactic microorganisms in a nanofluid-saturated porous cavity heated with a bell-shaped curved bottom. Int. J. Numer. Methods Heat Fluid Flow 31(12), 3722–3751 (2021)

    Article  Google Scholar 

  35. N. Biswas, N.K. Manna, R.S.R. Gorla, D.K. Mandal, Magnetohydrodynamic bioconvection of oxytactic microorganisms in porous media saturated with Cu-water nanofluid. Int. J. Numer. Methods Heat Fluid Flow 31(11), 3461–3489 (2021)

    Article  Google Scholar 

  36. N. Biswas, A. Datta, N.K. Manna, R.S.R. Gorla, D.K. Mandal, Thermo-bioconvection of oxytactic microorganisms in porous media in the presence of magnetic field. Int. J. Numer. Methods Heat Fluid Flow 31(5), 1638–1661 (2021)

    Article  Google Scholar 

  37. D. Debayan, T. Basak, Role of discrete heating on the efficient thermal management within porous square and triangular enclosures via heatline approach. Int. J. Heat Mass Transf. 112, 489–508 (2017)

    Article  Google Scholar 

  38. S. Hussain, H.F. Oztop, Impact of inclined magnetic field and power law fluid on double diffusive mixed convection in lid-driven curvilinear cavity. Int. Commun. Heat Mass Transf. 127, 105549 (2021)

    Article  Google Scholar 

  39. D.K. Mandal, N. Biswas, N.K. Manna, R.S.R. Gorla, A.J. Chamkha, Role of surface undulation during mixed bioconvective nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields. Int. J. Mech. Sci. 211, 106778 (2021)

    Article  Google Scholar 

  40. N. Biswas, M.K. Mondal, D.K. Mandal, N.K. Manna, R.S.R. Gorla, A.J. Chamkha, A narrative loom of hybrid nanofluid filled wavy walled tilted porous enclosure imposing a partially active magnetic field. Int. J. Mech. Sci. 217, 107028 (2021)

    Article  Google Scholar 

  41. H. Mallick, H. Mondal, N. Biswas, N.K. Manna, Buoyancy driven flow in a parallelogrammic enclosure with an obstructive block and magnetic field. Mater. Today Proc. 44(2), 3164–3171 (2021)

    Article  Google Scholar 

  42. P. Karki, D.A. Perumal, A.K. Yadav, Comparative studies on air, water and nanofluids based Rayleigh Benard natural convection using Lattice Boltzmann Method: CFD and exergy analysis. J. Therm. Anal. Calorim. 147(2), 1487–1503 (2022)

    Article  Google Scholar 

  43. P. Gokulavani, M. Muthtamilselvan, B. Abdalla, Impact of injection/suction and entropy generation of the porous open cavity with the hybrid nanofluid. J. Therm. Anal. Calorim. 147, 3299–3312 (2022)

    Article  Google Scholar 

  44. P. Gokulavani, M. Muthtamilselvan, Q.M. Al-Mdallal, D.H. Doh, Effects of orientation of the centrally placed heated baffle in an alternative configured ventilation cavity. Eur. Phys. J. Plus. 135(1), 23 1–16 (2020)

  45. G.D.V. Davis, I.P. Jones, Natural convection in a square cavity: a comparison exercise. Int. J. Numer. Methods Fluids 3, 227–248 (1983)

    Article  ADS  MATH  Google Scholar 

  46. S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al\(_{2}\)O\(_{3}\)-Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid. Sci. 38, 54–60 (2012)

    Article  Google Scholar 

  47. B. Mliki, M.A. Abbassi, A. Omri, B. Zeghmati, Effects of nanoparticles Brownian motion in a linearly/sinusoidally heated cavity with MHD natural convection in the presence of uniform heat generation/absorption. Powder Technol. 295, 69–83 (2016)

    Article  Google Scholar 

  48. P.S. Mahapatra, A. Mukhopadhyay, N.K. Manna, K. Ghosh, Heatlines and other visualization techniques for confined heat transfer systems. Int. J. Heat Mass Transf. 118, 1069–1079 (2018)

    Article  Google Scholar 

  49. S. Kimura, A. Bejan, The “heatline” visualization of convective heat transfer. J. Heat Transf. 105(4), 916–919 (1983)

  50. N. Biswas, P.S. Mahapatra, N.K. Manna, Enhanced thermal energy transport using adiabatic block inside lid driven cavity. Int. J. Heat Mass Transf. 100, 407–427 (2016)

    Article  Google Scholar 

  51. D. Chatterjee, N.K. Manna, N. Biswas, Thermo-magnetic convection of nanofluid in a triangular cavity with a heated inverted triangular object. Mater. Today Proc. 52(3), 427–433 (2022)

    Article  Google Scholar 

  52. K. Al-Farhany, M.A. Alomari, K.B. Saleem, W. Al-Kouz, N. Biswas, Numerical investigation of double-diffusive natural convection in a staggered cavity with two triangular obstacles. Eur. Phys. J. Plus 136(814), 1–24 (2021)

    Google Scholar 

  53. K. Al-Farhany, K.K. Al-Chlaihawi, M.F. Al-dawody, N. Biswas, A.J. Chamkha, Effects of fins on magnetohydrodynamic conjugate natural convection in a nanofluid-saturated porous inclined enclosure. Int. Commun. Heat Mass Transf. 126, 105413 (2021)

    Article  Google Scholar 

  54. R.W. Lewis, K. Morgan, H.R. Thomas, K.N. Seetharamu, The Finite Element Method in Heat Transfer Analysis (Wiley, New York, 1996)

    MATH  Google Scholar 

  55. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw Hill, New York, 1980)

    MATH  Google Scholar 

  56. N.K. Manna, N. Biswas, P.S. Mahapatra, Convective heat transfer enhancement: effect of multi-frequency heating. Int. J. Numer. Methods Heat Fluid Flow 29(10), 3822–3856 (2019)

    Article  Google Scholar 

  57. D.K. Mandal, N. Biswas, N.K. Manna, D.K. Gayen, R.S.R. Gorla, A.J. Chamkha, Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: application of artificial neural networks (ANN). Phys. Fluids 34, 033608 (2022)

  58. N. Biswas, N.K. Manna, P. Datta, P.S. Mahapatra, Analysis of heat transfer and pumping power for bottom-heated porous cavity saturated with Cu-water nanofluid. Powder Technol. 326, 356–369 (2018)

    Article  Google Scholar 

  59. N. Biswas, M.K. Mondal, N.K. Manna, D.K. Mandal, A.J. Chamkha, Implementation of partial magnetic fields to magneto-thermal convective systems operated using hybrid-nanoliquid and porous media. J. Mech. Eng. Sci. (2021). https://doi.org/10.1177/09544062211060168

  60. O. Aydin, G. Yesiloz, Natural convection in a quadrantal cavity heated and cooled on adjacent walls. J. Heat Transf. 133(5), 1–7:052501 (2011)

Download references

Funding

The authors declare that they have no direct funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmalendu Biswas.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Compliance with Ethical Standards

The authors declare about the compliance with Ethical Standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Manna, N.K., Ghosh, K. et al. Analysis of geometrical shape impact on thermal management of practical fluids using square and circular cavities. Eur. Phys. J. Spec. Top. 231, 2509–2537 (2022). https://doi.org/10.1140/epjs/s11734-022-00593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00593-8

Navigation