Skip to main content
Log in

Exploring surface oxidation behavior of NiTi–V alloys

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Non-isothermal oxidation behavior of Ni50Ti49.6V0.4 (at.%) and Ni50Ti46V4 (at.%) polycrystalline alloys was investigated through thermogravimetric analysis. Differential scanning calorimetry and scanning electron microscope were used to study the role of oxidations on the transformation temperatures and surface characteristics, respectively. It was revealed that the oxidation response of the alloys is very sensitive to the vanadium content and the oxidation temperature. The oxidation constant was linearly proportional to oxidation temperatures ranging between 850 and 1150 °C. It was found that the activation energies for oxidation decreased from 207.81 \((\mp \) 5.6) to 192.8 \((\mp \) 3.8) kJ/mol, while the vanadium content increased from 0.4 to 4%. The effects of chemical composition and temperature on the oxidation behavior were discussed. The surface of both alloys was covered by a titanium dioxide and nickel-enriched layer through the isothermal oxidation process. The grain size of the alloys was affected by the increasing oxidation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Monroe, D. Gehring, I. Karaman, R. Arroyave, D.W. Brown, B. Clausen, Tailored thermal expansion alloys. Acta Mater. 102, 333–341 (2016)

    Article  Google Scholar 

  2. J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, G. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 90, 213–231 (2015)

    Article  Google Scholar 

  3. A. Ahadi, Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—effects of grain size. Appl. Phys. Lett. 103, 021902 (2013)

    Article  ADS  Google Scholar 

  4. W. Duerig, N. Melton, D. Stockel, C. Wayman, Engineering aspects of shape memory alloys. Butterworth-Heinemann, London (1990)

  5. L.H. Yahia, J. Ryhänen, Bioperformance of shape memory alloys: shape memory implants (Springer, New York, 2000), pp. 3–23

    Chapter  Google Scholar 

  6. K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005)

    Article  Google Scholar 

  7. H. Lin, C. Yang, M. Lin, C. Lin, K. Lin, L. Chang, Aging effect on a Ti47.25Ni48.75V4 shape memory alloy. J. Alloys Compd. 449, 119–124 (2008).

  8. M. Kok, A.O.A. Al-Jaf, Z.D. Çirak, I.N. Qader, E. Özen, Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. J. Therm. Anal. Calorim. (2019)

  9. X. Shi, H. Yang, H. Mao, Y. Li, J. Zhang, X. Yin, Effect of plastic deformation of V nanowires on the transformation characteristics of NiTiV alloys. Mater. Sci. Eng. A 735, 162–165 (2018)

    Article  Google Scholar 

  10. M. Zarinejad, Y. Liu, Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv. Funct. Mater. 18, 2789–2794 (2008)

    Article  Google Scholar 

  11. J.J. Gilman, Electronic basis of the strength of materials (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  12. H. Karaca, S. Saghaian, H. Tobe, E. Acar, B. Basaran, M. Nagasako, R. Kainuma, R. Noebe, Diffusionless phase transformation characteristics of Mn75.7Pt24.3. J. Alloys Compd. 589, 412–415 (2014)

    Article  Google Scholar 

  13. E. Acar, M. Çalışkan, H.E. Karaca, Differential scanning calorimetry response of aged NiTiHfPd shape memory alloys. Appl. Phys. A 125, 239 (2019)

    Article  ADS  Google Scholar 

  14. F. Dagdelen, M. Kok, I. Qader, Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals Mater. Int. 25(6), 1420–1427 (2019)

    Article  Google Scholar 

  15. I.N. Qader, M. Kök, F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu–Al–Ni–Hf) shape memory alloy. Phys B 553, 1–5 (2019)

    Article  ADS  Google Scholar 

  16. E. Acar, G.P. Toker, H. Kurkcu, H.E. Karaca, High temperature shape memory behavior of Ni47 3Ti29 7Hf20Pd3 alloys. Intermetallics 111, 106518 (2019)

    Article  Google Scholar 

  17. D. Dunne, C. Wayman, The effect of austenite ordering on the martensite transformation in Fe–Pt alloys near the composition Fe 3 Pt: I Morphology and transformation characteristics. Metal. Trans. 4, 137–145 (1973)

    Article  Google Scholar 

  18. D. Dunne, C. Wayman, The effect of austenite ordering on the martensite transformation in Fe–Pt alloys near the composition Fe 3 Pt: II. Crystallography and general features. Metal. Trans. 4, 147–152 (1973)

    Article  Google Scholar 

  19. E. Acar, H. Tobe, H. Karaca, R. Noebe, Y. Chumlyakov, Microstructure and shape memory behavior of [111]-oriented NiTiHfPd alloys. Smart Mater. Struct. 25, 035011 (2016)

    Article  ADS  Google Scholar 

  20. B. Kockar, I. Karaman, J. Kim, Y. Chumlyakov, J. Sharp, C.-J.M. Yu, Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater. 56, 3630–3646 (2008)

    Article  Google Scholar 

  21. M. Kök, H.S.A. Zardawi, I.N. Qader, M.S. Kanca, The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. Eur. Phys. J. Plus 134, 197 (2019)

    Article  Google Scholar 

  22. F. Dagdelen, E. Ercan, The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures. J. Therm. Anal. Calorim. 115, 561–565 (2014).

  23. M. Kök, G. Pirge, Y. Aydoğdu, Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600–1000 ∘C. Appl. Surf. Sci. 268, 136–140 (2013)

    Article  ADS  Google Scholar 

  24. T. Alurakami, Y. Imai, I. Nakajima, The effect of alloying on the austenitic grain size and growth of steel. J. Jpn. Inst. Metals 7, 336–346 (1943)

    Article  Google Scholar 

  25. T. Nishizawa, Thermodynamics of micro-alloying. Mater. Trans. 42, 2027–2032 (2001)

    Article  Google Scholar 

  26. A. Ahadi, A.R. Kalidindi, J. Sakurai, Y. Matsushita, K. Tsuchiya, C.A. Schuh, The role of W on the thermal stability of nanocrystalline NiTiWx thin films. Acta Mater. 142, 181–192 (2018)

    Article  Google Scholar 

  27. L. Bolzoni, N.H. Babu, Considerations on the effect of solutal on the grain size of castings from superheated melts. Mater. Lett. 201, 9–12 (2017)

    Article  Google Scholar 

  28. T. Marukami, R. Sahara, D. Harako, M. Akiba, T. Narushima, C. Ouchi, The effect of solute elements on hardness and grain size in platinum based binary alloys. Mater. Trans. 49, 538–547 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by Erciyes University (Grant no: FBA-2017-7604) and the Management Unit of Scientific Research Projects of Firat University (FUBAP) (Project number: FF.19.14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Acar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, E., Kok, M. & Qader, I.N. Exploring surface oxidation behavior of NiTi–V alloys. Eur. Phys. J. Plus 135, 58 (2020). https://doi.org/10.1140/epjp/s13360-019-00087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00087-y

Navigation