Skip to main content
Log in

Dynamics of a central electron spin coupled to an anti-ferromagnetic spin bath driven by a variable magnetic field in the Landau-Zener scenario

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The Landau-Zener (LZ) transition probability of a two-level crossing in a single quantum dot driven by a two-state auto-correlated (TSAC) noise is studied. The model used isolates a central electron spin (CES) system bathed with TSAC noise and an anti-ferromagnetic spin bath. This model turnes into the LZ formalism in the limit of weak-excitation magnetic field. The effects of noise and of the coupling with the spin chain, on the LZ-transition probability are studied. In the weak coupling regime of the CES with the bath, it is seen that the TSAC noise effect can be compared with that of a deterministic sinusoidal oscillating function. In the strong coupling regime this effect decreases and alters the noise process on the LZ-transition probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Bloch, Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  2. Y. Xiao-Zhong, G. Hsi-Sheng, Z. Ka-Di, New J. Phys. 9, 219 (2007)

    Article  Google Scholar 

  3. M. Tchoffo, G.C. Fouokeng et al., World J. Condens. Matter Phys. 2, 246 (2012)

    Article  ADS  Google Scholar 

  4. M. Tchoffo, G.C. Fouokeng, L.C. Fai, M.E. Ateuafack, J. Quantum Inf. Sci. 3, 10 (2013)

    Article  Google Scholar 

  5. Y. Xiao-Zhong, Hsi-Sheng Goan, Ka-Di Zhu, Phys. Rev. B 75, 045331 (2007)

    Article  ADS  Google Scholar 

  6. H. Ribeiro, J.R. Petta, Guido Burkard, Phys. Rev. B 82, 115445 (2010)

    Article  ADS  Google Scholar 

  7. K.C. Nowack, F.H.L. Koppens, Yu.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)

    Article  ADS  Google Scholar 

  8. J. Schliemann, A. Khaetskii, D. Loss, J. Phys. Condens. Matter 15, R1809 (2003)

    Article  ADS  Google Scholar 

  9. S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, A. Yacoby, Nat. Phys. 5, 903 (2009)

    Article  Google Scholar 

  10. K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, P. Hänggi, Phys. Rev. B 75, 214308 (2007)

    Article  ADS  Google Scholar 

  11. W.D. Oliver, Y. Yu, J.C. Lee, K.K. Berggren, L.S. Levitov, T.P. Orlando, Science 310, 1653 (2005)

    Article  ADS  Google Scholar 

  12. M. Sillanpaa, T. Lehtinen, A. Paila, Y. Makhlin, P. Hakonen, Phys. Rev. Lett. 96, 187002 (2006)

    Article  ADS  Google Scholar 

  13. J. Ankerhold, H. Grabert, Phys. Rev. Lett. 91, 016803 (2003)

    Article  ADS  Google Scholar 

  14. K. Saito, Y. Kayanuma, Phys. Rev. B 70, 201304(R) (2004)

    Article  ADS  Google Scholar 

  15. G.C. Fouokeng, M. Tchoffo et al., Adv. Condens. Matter Phys. 2014, 526205 (2014)

    Article  Google Scholar 

  16. F. Bloch, Z. Phys. A 52, 555 (1929)

    Article  Google Scholar 

  17. L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932)

    Google Scholar 

  18. R. McDermott, IEEE Trans. Appl. Superconduct. 19, 1 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. B. Rosam, K. Leo et al., Phys. Rev. B 68, 125301 (2003)

    Article  ADS  Google Scholar 

  20. P. Abumov, D.W.L. Sprung, Phys. Rev. B 75, 165421 (2007)

    Article  ADS  Google Scholar 

  21. A. Zenesini et al., New J. Phys. 10, 053038 (2008)

    Article  ADS  Google Scholar 

  22. K. Rapedius, C. Elsen, D. Witthaut, S. Wimberger, H.J. Korsch, Phys. Rev. A 82, 063601 (2010)

    Article  ADS  Google Scholar 

  23. R. Hanson et D.D. Awschalom, Nature 453, (2008)

  24. J. Clarke, F.K. Wilhelm, Nature 453, (2008)

  25. T.D. Ladd, F. Jelezko et al., Nature 464, (2010)

  26. P.W. Anderson, J. Phys. Soc. Jpn. 9, (1954)

  27. R. Kubo, J. Phys. Soc. Jpn. 9, (1954)

  28. P.R. Berman, et R.G. Brewer, Phys. Rev. A 32, 5 (1985)

    Article  Google Scholar 

  29. R.F. Loring, et S. Mukame, Chem. Phys. Lett. 114, (1985)

  30. E. Shimshoni, A. Stern, Phys. Rev. B 47, 9523 (1992)

    Article  ADS  Google Scholar 

  31. M. Wubs, K. Saito, S. Kohler, P. Hanggi, Y. Kayanuma, Phys. Rev. Lett. 97, 200404 (2006)

    Article  ADS  Google Scholar 

  32. V.L. Pokrovsky, S. Scheidl, Phys. Rev. B 70, 014416 (2004)

    Article  ADS  Google Scholar 

  33. S.N. Shevchenko, S. Ashhab, Franco Nori, Phys. Rep. 492, (2010)

  34. J.I. Vestgården, J. Bergli, Y.M. Galperin, Phys. Rev. B 77, 014514 (2008)

    Article  ADS  Google Scholar 

  35. I.I. Rabi, Phys. Rev. 51, 652 (1937)

    Article  ADS  Google Scholar 

  36. R. Hanson, D.D. Awschalom, Nature (London) 453, 1043 (2008)

    Article  ADS  Google Scholar 

  37. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, New York, 1961)

  38. N. Rosen, C. Zener, Phys. Rev. 40, 502 (1932)

    Article  MATH  ADS  Google Scholar 

  39. F.T. Hioe, C.E. Carroll, Phys. Rev. A 32, 1541 (1985)

    Article  ADS  Google Scholar 

  40. E.C.G. Stuckelberg, Helv. Phys. Acta 5, 369 (1932)

    Google Scholar 

  41. P. Hanggi, P. Jung, Adv. Chem. Phys. 39, 239 (1995)

    Google Scholar 

  42. W. Yang, R.B. Liu, Phys. Rev. B 78, 085315 (2008)

    Article  ADS  Google Scholar 

  43. D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R. Fazio, Phys. Rev. A 75, 032333 (2007)

    Article  ADS  Google Scholar 

  44. C. Zener, Proc. Roy. Soc. London A 137, 696 (1932)

    Article  ADS  Google Scholar 

  45. E. Majorana, Nuovo Cimento 9, 43 (1932)

    Article  Google Scholar 

  46. A.V. Shytov, D.A. Ivanov, M.V. Feigelman, Eur. Phys. J. B 36, 263 (2003)

    Article  ADS  Google Scholar 

  47. F. Di Giacomo, E.E. Nikitin, Phys. Usp. 48, 515 (2005)

    Article  ADS  Google Scholar 

  48. N.V. Vitanov, Phys. Rev. A 59, 2 (1999)

    Google Scholar 

  49. A. Ishkhanyan, J. Javanainenand, H. Nakamura, J. Phys. A: Math. Gen. 38, 3505 (2005)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Collince Fouokeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouokeng, G., Tchoffo, M., Ateuafack, M. et al. Dynamics of a central electron spin coupled to an anti-ferromagnetic spin bath driven by a variable magnetic field in the Landau-Zener scenario. Eur. Phys. J. Plus 129, 151 (2014). https://doi.org/10.1140/epjp/i2014-14151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14151-x

Keywords

Navigation