Skip to main content
Log in

Luis Santaló and classical field theory

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Considered one of the founding fathers of integral geometry, Luis Santaló has contributed to various areas of mathematics. His work has applications in number theory, in the theory of differential equations, in stochastic geometry, in functional analysis, and also in theoretical physics. Between the 1950’s and the 1970’s, he wrote a series of papers on general relativity and on the attempts at generalizing Einstein’s theory to formulate a unified field theory. His main contribution in this subject was to provide a classification theorem for the plethora of tensors that were populating Einstein’s generalized theory. This paper revisits his work on theoretical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Santaló, Un invariante afin para los cuerpos convexos del espacio des n dimensiones, Portugaliae Math. 8:155 (1949).

    MathSciNet  Google Scholar 

  2. S. Chern, Review: Luis A. Santaló, Integral geometry and geometric probability, Bull. Am. Math. Soc. 83:1289 (1977).

    Article  Google Scholar 

  3. R. Abt, J. Erdmenger, M. Gerbershagen, C. Melby-Thompson, C. Northe, Holographic Subregion Complexity from Kinematic Space, JHEP 1901:12 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  4. V. Balasubramanian, C. Rabideau, The dual of non-extremal area: differential entropy in higher dimensions [https://arXiv:1812.06985].

  5. B. Czech, L. Lamprou, S. McCandlish, J. Sully, Integral Geometry and Holography, JHEP 1510:175 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Gardner,Geometric tomography, Cambridge University Press (1995).

  7. J. Girbau, Discurs llegit en la cerimònia del doctorat honoris causa de Luis Antoni Santaló, Universitat Autònoma de Barcelona (1986).

  8. A. Naveira and A. Reventós (Eds.),Luís Antonio Santaló: Selected works, SpringerCollected Works in Mathematics (2009).

  9. L. Santaló, La última teoría del campo unificado de Einstein, Ciencia e Investigación 9:300 (1953).

    Google Scholar 

  10. L. Santaló, El problema de la unificación de los campos, Mundo Atómico 4:11 (1953).

    Google Scholar 

  11. L. Santaló, Sobre algunos tensores análogos al de curvatura en espacios con una conexión afín no-simétrica, Revista de la Universidad Nacional de Tucumán 10:19 (1954).

    Google Scholar 

  12. L. Santaló, El legado einsteiniano, Ciencia e Investigación 7:289 (1955).

    Google Scholar 

  13. L. Santaló, Influencia de Einstein en el campo matemático, Ciencia e Investigación 11:304 (1955).

    Google Scholar 

  14. L. Santaló, Sobre las ecuaciones del campo unificado de Einstein, Revista de la Universidad Nacional de Tucumán 12:31 (1959).

    Google Scholar 

  15. L. Santaló, Sobre las ecuaciones del campo unificado de Einstein, Revista de la Unión Matemática Argentina 19:196 (1960).

    MathSciNet  Google Scholar 

  16. L. Santaló, On Einstein’s unified field theory, inProspects in Geometry and Relativity (1966), p. 343.

  17. L. Santaló, Sobre algunas teorías asimétricas del campo unificado. Revista de la Real Academia de Ciencias Exactas de Madrid 66:395 (1972).

    Google Scholar 

  18. L. Santaló, Unified field theory of Einstein’s type deduced from variational principle, Tensor 25:383 (1972).

    MathSciNet  MATH  Google Scholar 

  19. A. Einstein,The meaning of relativity, 4th edn., Princeton University Press (1953), p. 321.

  20. H. Goenner, On the History of Unified Field Theories. Part II, Living Rev. Rel. 17:5 (2014).

    Article  Google Scholar 

  21. A. Einstein, A generalized theory of gravitation, Rev. Mod. Phys. 20:35 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Einstein, The Bianchi identities in the generalized theory of gravitation, Can. J. Math. 2:120 (1950).

    Article  MathSciNet  Google Scholar 

  23. A. Einstein, A generalization of the relativistic theory of gravitation, Ann. Math. 46:578 (1945).

    Article  MathSciNet  Google Scholar 

  24. A. Einstein, E. Straus, A generalization of the relativistic theory of gravitation II, Ann. Math. 47:731 (1946).

    Article  MathSciNet  Google Scholar 

  25. A. Einstein, B. Kaufman, Sur l’état actuel de la théorie générale de la gravitation inLouis de Broglie, Physicien et Penseur, Volume in honor to Louis de Broglie, Paris (1952), p. 321.

  26. A. Einstein, B. Kaufman, Algebraic properties of the field theory of the asymmetric field, Ann. Math. 59:230 (1954).

    Article  MathSciNet  Google Scholar 

  27. A. Einstein, B. Kaufman, A new form of the general relativistic field equations, Ann. Math. 62:128 (1955).

    Article  MathSciNet  Google Scholar 

  28. L. Santaló, Integral Geometry on surfaces, Duke Math. J. 16:361 (1949).

    Article  MathSciNet  Google Scholar 

  29. L. Santaló, On parallel hypersurfaces in the elliptic and hyperbolic n-dimensional space, Proc. Amer. Math. Soc. 1:325 (1950).

    Article  MathSciNet  Google Scholar 

  30. L. Santaló, Integral Geometry in general spaces, Proceedings of the International Congress of Mathematicians, Cambridge Mass. Amer. Math. Soc. R. I. 1:482 (1950).

    Google Scholar 

  31. L. Santaló, Integral Geometry in projective and affine spaces, Ann. Math. 51:739 (1950).

    Article  MathSciNet  Google Scholar 

  32. E. Cartan, Sur les équations de la gravitation d’Einstein, J. Math. Pures Appl. 1:141 (1922).

    MATH  ADS  Google Scholar 

  33. E. Schrödinger, Generalizations of Einstein theory, inSpace-Time Structure, Cambridge University Press (1950), p. 106.

  34. L. Eisenhart, The Einstein generalized Riemannian geometry, Proc. Natl. Acad. Sci. USA 50:190 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  35. V. Hlavatý,Geometry of Einstein’s Unified Field Theory, Noordhoff, Groningen (1957).

  36. B. Kaufan, Mathematical struture of the non-symmetric field theory, Proceeding of the 50 anniversary conference on relativity, Bern 1950, Helvetica Physica Acta IV (1956) 227.

  37. A. Lichnerowicz,Théories relativistes de la gravitation et l’electromagnétisme, Paris, Masson (1955).

  38. M. Tonnelat,La théorie du champ unifié d’Einstein et quelques-uns de ses développements, Paris, Gauthier-Villars (1955).

  39. J. Winogradzki, Le group relativiste de la théorie unitaire d’Einstein-Schrödinger, J. Phys. Radium 16:438 (1955).

    Article  MathSciNet  Google Scholar 

  40. L. Eisenhart, Non-Riemannian Geometry, Am. Math. Soc. Coll. Pubns VIII (1927).

  41. M. Gualtieri, Generalized complex geometry. Oxford University D. Phil thesis. [https://arXiv:math/0401221 [math.DG]].

  42. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48:2826 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  43. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47:5453 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  44. C. Hull, B. Zwiebach, Double Field Theory, JHEP 0909:099 (2009).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaston Giribet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvagno, M., Giribet, G. Luis Santaló and classical field theory. EPJ H 44, 381–389 (2019). https://doi.org/10.1140/epjh/e2019-100038-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2019-100038-9

Navigation