Skip to main content
Log in

Century of Λ

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The cosmological constant was proposed 100 years ago in order to make the model of static Universe, imagined then by most scientists, possible. Today it is the main candidate for the physical essence causing the observed accelerated expansion of our Universe. But, as well as a hundred years ago, its nature is unknown. This paper is devoted to the story of invention of Λ by Albert Einstein in 1917, rejection of it by him in 1931 and returning of it into the great science by other scientists during the century. The aim is to once again emphasize prominent role of cosmological constant in the development of ideas of modern physics and cosmology, focusing on the main points and publications, the choice of which may have a certain part of subjectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, A. and Steinhardt, P. 1982. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters 48: 1220–1223

    Article  ADS  Google Scholar 

  2. Apunevych, S., Kulinich, Yu., Novosyadlyj, B. and Pelykh, V. 2009. Dark matter and dark energy in the Universe: Astrophysical reasons and theoretical models. Kinematics and Physics of Celestial Bodies 25: 55–72

    Article  ADS  Google Scholar 

  3. Burdyuzha, V.V. 2017. The dark components of the Universe are slowly clarified. Journal of Experimental and Theoretical Physics 124: 358–368

    Article  ADS  Google Scholar 

  4. Carter, B. 1974. Large Number Coincidences and the Anthropic Principle in Cosmology. IAU Symposium 63: Confrontation of Cosmological Theories with Observational Data. Dordrecht: Reidel, 291–298

  5. de Sitter, W. 1917a. On the relativity of inertia. Remarks concerning Einstein’s latest hypothesis. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 19: 1217–1225

    ADS  Google Scholar 

  6. de Sitter, W. 1917b. On Einstein’s Theory of Gravitation, and its Astronomical Consequences. Third paper. Monthly Notices of the Royal Astronomical Society 78: 3–27

    Article  ADS  Google Scholar 

  7. de Sitter, W. 1930. The expanding universe. Discussion of Lemaître’s solution of the equations of the inertial field. Bulletin of the Astronomical Institutes of the Netherlands 5: 211–218

    ADS  Google Scholar 

  8. Einstein, A. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademieder Wissenschaften (Berlin) 1: 142–152

    MATH  Google Scholar 

  9. Einstein, A. 1923. Notiz zu der Bemerkung zu der Arbeit von A. Friedmann. Über die Krümmung des Raumes. Zeitschrift für Physik 6: 228

    Article  ADS  MATH  Google Scholar 

  10. Einstein, A. 1931. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitzungsber. Preuss. Akad. Wiss., phys.-math. Kl.: 235–237

  11. Einstein, A. and de Sitter, W. 1932. On the Relation between the Expansion and the Mean Density of the Universe. Contributions from the Mount Wilson Observatory 3: 51–52; Proceedings of the National Academy of Sciences of the United States of America 18: 213–214.

    ADS  MATH  Google Scholar 

  12. Einstein, A. 1945. On the “Cosmologic Problem”. The Meaning of Relativity, PrincetonUniversity Press, Princeton (3rd edition): 112–135

  13. Friedmann, A. 1922. Über die Krümmung des Raumes. Zeitschrift für Physik 10: 377–386

    Article  ADS  MATH  Google Scholar 

  14. Friedmann, A. 1924. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik 21: 326–333

    Article  ADS  MATH  Google Scholar 

  15. Gliner, E. B. 1965. Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States of Matter. Journal of Experimental and Theoretical Physics 49: 542–549

    Google Scholar 

  16. Gliner, E. B. 1970. Vacuum-like state of medium and Friedmann’s cosmology. Soviet Physics Doklady 15: 559–565

    ADS  Google Scholar 

  17. Guth, A. H. 1981. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23: 347–356

    Article  ADS  MATH  Google Scholar 

  18. Harvey, A. and Schucking, E. 2000. Einstein’s mistake and the cosmological constant. American Journal of Physics 68: 723–728

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hamuy, M., Maza, J., Phillips, M. M., Suntzeff, N. B. et al. 1993. The 1990 Calan/Tololo Supernova Search. The Astronomical Journal 106: 2392–2407

    Article  ADS  Google Scholar 

  20. Hubble, E. 1929. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Contributions from the Mount Wilson Observatory 3: 23–28; Proceedings of the National Academy of Sciences of the United States of America 15: 168–173.

  21. Kardashev, N. 1967. Lemaître’s Universe and Observations. The Astrophysical Journal 150: L135–L139

    Article  ADS  Google Scholar 

  22. Kragh, H. 2012. Preludes to dark energy: Zero-point energy and vacuum speculations. Archive for History of Exact Sciences 66: 199–240

    Article  Google Scholar 

  23. Kragh, H. 2017. Georges Lemaître: An overview of his contributions to physics and cosmology. Vatican Observatory Conference, 2017, http://www.vaticanobservatory.va/content/specolavaticana/en/workshop-Lemaitre/program.html

  24. Koksma, J.F. and Prokopec, T. 2011. The Cosmological Constant and Lorentz Invariance of the Vacuum State, arXiv:1105.6296

  25. Lemaître, G. 1927. Un Univers homogéne de masse constante et de rayon croissant rendant compte de la vitesse radiale des nèbuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles A47: 49–59

    ADS  MATH  Google Scholar 

  26. Lemaître, G. 1931. Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Monthly Notices of the Royal Astronomical Society 91: 483–490

    Article  ADS  MATH  Google Scholar 

  27. Lemaître, G. 1933. L’Univers en expansion. Annales de la Société Scientifique de Bruxelles A53: 51

    ADS  MATH  Google Scholar 

  28. Lemaître, G. 1934. Evolution of the expanding universe. Proceedings of the National Academy of Sciences of the United States of America 20: 12–17

    Article  ADS  MATH  Google Scholar 

  29. Liddle, A.R. and Lyth, D.H. 1993. The Cold Dark Matter Density Perturbation. Physics Reports 231: 1–105

    Article  ADS  Google Scholar 

  30. Linde, A. 1982. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B 108: 389–393

    Article  ADS  Google Scholar 

  31. Livio, M. 2011. Lost in translation: Mystery of the missing text solved. Nature 479: 171–173

    Article  ADS  Google Scholar 

  32. Lombriser, L. and Smer-Barreto, V. 2017. Is there another coincidence problem at the reionization epoch ? Physical Review D 96: id.123505

  33. O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and Mitton, S. 2017. Einstein’s 1917 static model of the universe: a centennial review, The European Physical Journal H 42: 431–474

    Article  ADS  Google Scholar 

  34. O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and Mitton, S. 2018. One Hundred Years of the Cosmological Constant: from “Superfluous Stunt” to Dark Energy, The European Physical Journal H 43: 1–45

    Article  Google Scholar 

  35. Padmanabhan, T. 2006. Dark Energy: Mystery of the Millennium. AIP Conference Proceedings, 2006, 861, p. 179.

    ADS  Google Scholar 

  36. Peebles, P.J.E. 1984. Tests of cosmological models constrained by inflation, The Astrophysical Journal 284: 439–444

    Article  ADS  Google Scholar 

  37. Perlmutter, S., Aldering, G., ... Filippenko, A.V. et al. (Supernova Cosmology Project). 1999. Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal 517: 565–586

    Article  ADS  MATH  Google Scholar 

  38. Perlmutter, S. 2011. Measuring the Acceleration of the Cosmic Expansion Using Supernovae. Nobel Lecture, December 8, 2011, https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/perlmutter-lecture.pdf

  39. Petrosian, V., Salpeter, E. and Szekeres, P. 1967. Quasi-Stellar Objects in Universes with Non-Zero Cosmological Constant. The Astrophysical Journal 147: 1222–1226

    Article  ADS  Google Scholar 

  40. Riess, A., Filippenko, A.V. et al. (High-z Supernova Search). 1998. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal 116: 1009–1038

    Google Scholar 

  41. Riess, A.G. 2011. My Path to the Accelerating Universe. Nobel Lecture, December 8, 2011, https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/riess_lecture.pdf

  42. Schmidt, B. P., Suntzeff, N. B., ... Filippenko, A.V. et al. (High-z Supernova Search). 1998. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. The Astrophysical Journal 507: 46–63

    Article  ADS  Google Scholar 

  43. Schmidt, B.P. 2011. The Path to Measuring an Accelerating Universe. Nobel Lecture, December 8, 2011, https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/schmidt_lecture.pdf

  44. Shklovsky, J. 1967. On the Nature of “standard” Absorption Spectrum of the Quasi-Stellar Objects. The Astrophysical Journal 150: L1–L3

    Article  ADS  Google Scholar 

  45. Starobinskii, A. A. 1979. Spectrum of relict gravitational radiation and the early state of the Universe. ZhETF Pisma Redaktsiiu 30: 719–723

    ADS  Google Scholar 

  46. Stromberg, G. 1925. Analysis of radial velocities of globular clusters and non-galactic nebulae. The Astrophysical Journal 61: 353–362

    Article  ADS  Google Scholar 

  47. Turner, M.S. 1999a. Cosmology Solved? Maybe. Nuclear Physics B Proceedings Supplements 72: 69–80

    Article  ADS  Google Scholar 

  48. Turner, M.S. 1999b. Cosmology Solved? Quite Possibly! The Publications of the Astronomical Society of the Pacific 111: 264–273

    Article  ADS  Google Scholar 

  49. Valdarnini, R., Kahniashvili, T. and Novosyadlyj, B. 1998. Large scale structure formationin mixed dark matter models with a cosmological constant. Astronomy & Astrophysics 336: 11–28

    ADS  Google Scholar 

  50. Weinberg, S. 1987. Anthropic bound on the cosmological constant. Physical Review Letters 59: 2607–2610

    Article  ADS  Google Scholar 

  51. Weinberg, S. 2008. Cosmology. Oxford University Press, New York, 612 p

  52. Zel’dovich, Ya B. 1968. Cosmological Constant and the Theory of Elementary Particles. Soviet Physics Uspekhi 11: 381–393

    Article  ADS  MathSciNet  Google Scholar 

  53. Zwicky, F. 1933. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6: 110–127

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Novosyadlyj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novosyadlyj, B. Century of Λ. EPJ H 43, 267–280 (2018). https://doi.org/10.1140/epjh/e2018-90007-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2018-90007-y

Navigation