Skip to main content

Advertisement

Log in

One hundred years of the cosmological constant: from “superfluous stunt” to dark energy

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today’s Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, B.P. et al. 2017a. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16): 161101.

    Article  ADS  Google Scholar 

  2. Abbott, B.P et al. 2017b. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848(2): L13–L18.

    Article  ADS  Google Scholar 

  3. Abbott, L. 1988. The mystery of the cosmological constant. Sci. Am. 258: 106–113.

    Article  ADS  Google Scholar 

  4. Albrecht, A. and P.J. Steinhardt. 1982. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48(17): 1220–1223.

    Article  ADS  Google Scholar 

  5. Alpher, R.A. and R.C. Herman. 1948. On the relative abundance of the elements. Phys. Rev. 74: 1737–1742.

    Article  ADS  Google Scholar 

  6. Alpher, R.A. and R.C. Herman. 1950. Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys. 22: 153–212.

    Article  ADS  MATH  Google Scholar 

  7. Alpher, R.A. and R.C. Herman. 1951. Neutron-capture theory of element formation in an expanding universe. Phys. Rev. 84: 60–68.

    Article  ADS  MATH  Google Scholar 

  8. Alpher, R.A., Bethe, H. and G. Gamow. 1948. The origin of chemical elements. Phys. Rev. 73(7): 803–804.

    Article  ADS  Google Scholar 

  9. AP 1931a. Associated Press Report. Prof. Einstein begins his work at Mt. Wilson. New YorkTimes, Jan 3, p1.

  10. AP 1931b. Associated Press Report. Red shift of nebulae a puzzle, says Einstein. New York Times, Feb 12, p2.

  11. Ashtekar, A. 2017. Implications of a positive cosmological constant for general relativity. Rep. Prog. Phys. 80(10): 102901–102910.

    Article  ADS  MathSciNet  Google Scholar 

  12. Baade, W. 1952. Extragalactic nebulae. Trs. IAU 8: 397–399.

    Google Scholar 

  13. Bahcall, N.A. and R Cen. 1992. Galaxy clusters and cold dark matter – a low-density unbiased universe? Astrophys. J. 398(2): L81–L84.

    Article  ADS  Google Scholar 

  14. Baker, T., Bellini, E., Ferreira, P.G., Lagos, M., Noller, J. and I. Sawicki. 2017. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Arxiv preprint 1710.06394.

  15. Balbi, et al. 2000. Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. 545(1): L1–L4.

    Article  ADS  MathSciNet  Google Scholar 

  16. Bardeen, J.M., Steinhardt and M.S. Turner. 1983. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28(4): 679–693.

    Article  ADS  Google Scholar 

  17. Barrow, J.D. 2012. The Book of Universes. Vintage Books, London.

  18. Barrow, J.D. and F.J. Tipler. 1986. The Anthropic Cosmological Principle. Oxford University Press, Oxford.

  19. Belenkiy, A. 2012. Alexander Friedmann and the origins of modern cosmology. Phys. Today 65(10): 38–43.

    Article  Google Scholar 

  20. Belenkiy, A. 2013. The waters I am entering no one yet has crossed: Alexander Friedmann and the origins of modern cosmology. In Proceedings of the Conference ‘Origins of the Expanding Universe’. (Eds M. Way and D. Hunter) ASP Conf. Ser. 471: 71–96.

  21. Bondi, H. 1952. Cosmology. Cambridge University Press, Cambridge.

  22. Bondi, H. and T. Gold. 1948. The steady-state theory of the expanding universe. MNRAS 108: 252–270.

    Article  ADS  MATH  Google Scholar 

  23. Bludman, S.A. and M.A. Ruderman. 1977. Induced cosmological constant expected above thephase transition restoring the broken symmetry. Phys. Rev. Lett. 38(5): 255–257.

    Article  ADS  Google Scholar 

  24. Brax, P. 2017. What makes the universe accelerate? A review on what dark energy could be and how to test it. To be published in Rep. Prog. Phys.

  25. Bronstein, M. 1933. On the expanding universe. Phys. Zeit. Sow. 3: 73–82.

    MATH  Google Scholar 

  26. Buckley, M.R., Feld, D., Macaluso, S., Monteux, A. and D. Shih. 2017. Cornering natural SUSY at LHC Run II and beyond. JHEP 2017(8): 115. ArXiv preprint 1610.08059.

    Article  Google Scholar 

  27. Burbidge, G.R. and E.M. Burbidge. 1967. Absorption lines in quasi-stellar objects. Nature 216(5120): 1092–1093.

    Article  ADS  Google Scholar 

  28. Calder, L. and O. Lahav. 2010. Dark energy: how the paradigm shifted. Phys. World 23(1): 32–37.

    Article  ADS  Google Scholar 

  29. Caldwell, R.R., Dave, R. and P.J. Steinhardt. 1998. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80(8): 1582–1585.

    Article  ADS  MATH  Google Scholar 

  30. Carroll, S.M. 2001. The cosmological constant. Liv. Rev. Rel. 4: 1–56.

    Article  MathSciNet  MATH  Google Scholar 

  31. Carroll, S.M., Press, W.H. and E.L. Turner. 1992. The cosmological constant. Ann. Rev. Astron. Astrophys. 30: 499–542.

    Article  ADS  Google Scholar 

  32. Carter, B. 1974. Large number coincidences and the anthropic principle in cosmology. In Confrontation of Cosmological Theories with Observational Data; Proceedings of the 1973 IAU Symposium (Ed. M.S. Longair) Reidel, Dordrecht. pp 291–298. Republished in Gen. Rel. Grav. 43(11): 3225–323 (2011).

  33. Casimir, H.B.G. 1948. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51(7): 793–780.

    MATH  Google Scholar 

  34. Chaboyer, B., Demarque, P., Kernan, P.J. and L.M. Krauss. 1996. A lower limit on the age ofthe universe. Science 271(5251): 957–961.

    Article  ADS  Google Scholar 

  35. Coleman, S. 1988. Why there is nothing rather than something; a theory of the cosmological constant. Nucl. Phys. B 310(3): 643–668.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Creminelli, P. and F. Vernizzi. 2017. Dark energy after GW170817. ArXiv preprint 1710.05877.

  37. de Bernardis, P. et al. 2000. A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404(6781): 955–959.

    Article  ADS  Google Scholar 

  38. de Sitter, W. 1917. On Einstein’s theory of gravitation and its astronomical consequences. Third paper. MNRAS 78: 3–28.

    Article  ADS  Google Scholar 

  39. de Sitter, W. 1930a. Proceedings of the RAS. The Observatory 53: 37–39.

    Google Scholar 

  40. de Sitter, W. 1930b. On the distances and radial velocities of the extragalactic nebulae, and the explanation of the latter by the relativity theory of inertia. PNAS 16: 474–488.

    Article  ADS  MATH  Google Scholar 

  41. de Sitter, W. 1930c. The expanding universe. Discussion of Lemaître’s solution of the equations of the inertial field. Bull. Astron. Inst. Neth. 5(193): 211–218.

    ADS  Google Scholar 

  42. de Sitter, W. 1931. The expanding universe. Scientia 49: 1–10.

    MATH  Google Scholar 

  43. de Sitter, W, 1932. Kosmos: A Course of Six Lectures on the Development of Our Insight into the Structure of the Universe. Harvard University Press, Cambridge, MA.

  44. Deltete, R.J. 1993. What does the anthropic principle explain? Persp. Sci. 1: 285–305.

    Google Scholar 

  45. Dicke, R.H. 1970. Gravitation and the Universe: Jayne Lectures for 1969. American Philosophical Society.

  46. Dicke, R.H. and P.J.E. Peebles. 1979. The big bang cosmology – enigmas and nostrums. In General Relativity; an Einstein Centenary Survey (Eds S.W. Hawking and W. Israel), Cambridge University Press. pp 504–517.

  47. Dirac, P.A.M. 1937. The cosmological constants. Nature 139 (3512): 323.

    Article  ADS  MATH  Google Scholar 

  48. Earman, J. 1987. The SAP also rises: a critical examination of the anthropic principle. Am. Phil. Quart. 24(4): 307–317.

    MathSciNet  Google Scholar 

  49. Earman, J. 2001. Lambda: the constant that refuses to die. Arch. Hist. Ex. Sci. 55: 189–220.

    Article  MathSciNet  MATH  Google Scholar 

  50. Eddington, A.S. 1930. On the instability of Einstein’s spherical world. MNRAS 90: 668–678.

    Article  ADS  MATH  Google Scholar 

  51. Eddington, A.S. 1931a. The recession of the extra-galactic nebulae. MNRAS 92: 3–6.

    Article  ADS  Google Scholar 

  52. Eddington, A.S. 1931b. On the value of the cosmical constant. Proc. Roy. Soc. A133: 605–615.

    Article  ADS  MATH  Google Scholar 

  53. Eddington,A.S. 1933. The Expanding Universe. Cambridge University Press, Cambridge.

  54. Efstathiou, G., Sutherland, W.J. and S.J. Maddox. 1990. The cosmolgical constant and cold dark matter. Nature 348: 705–707.

    Article  ADS  Google Scholar 

  55. Einstein, A. 1915a. Die Feldgleichungen der Gravitation. Sitz. König. Preuss. Akad. 844–847. Or ‘ The field equations of gravitation’ CPAE 6 (Doc. 25).

  56. Einstein, A. 1915b. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitz. König. Preuss. Akad. 831–839. Or ‘ Explanation of the perhelion motion of Mercury from the general theory of relativity’ CPAE 6 (Doc. 24).

  57. Einstein, A. 1916. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Physik. 49: 769–822. Or ‘The foundation of the general theory of relativity’ CPAE 6 (Doc. 30).

    Article  ADS  MATH  Google Scholar 

  58. Einstein, A. 1917a. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitz. König. Preuss. Akad. 142–152. Or ‘Cosmological considerations in the general theory of relativity’ CPAE 6 (Doc. 43).

  59. Einstein, A. 1917b. Letter to Willem de Sitter, March 12th. CPAE 8 (Doc. 311).

  60. Einstein, A. 1917c. Letter to Felix Klein, March 26th. CPAE 8 (Doc. 319).

  61. Einstein, A. 1917d. Letter to Willem de Sitter, April 14th. CPAE 8 (Doc. 325).

  62. Einstein, A. 1918a. Bemerkung zu Herrn Schrödingers Notiz “über ein Lösungssystem der allgemein kovarianten Gravitationsgleichungen”. Phys. Zeit. 19: 165–166. Or Comment on Schrödinger’s Note “On a system of solutions for the generally covariant gravitational field equations” CPAE 7 (Doc. 3).

    MATH  Google Scholar 

  63. Einstein 1918b. Letter to Michele Besso, July 29th. CPAE 8 (Doc. 591).

  64. Einstein 1918c. Letter to Michele Besso, August 20th. CPAE 8 (Doc. 604).

  65. Einstein 1918d. Über die Spezielle und die Allgemeine Relativitätstheorie. Vieweg (Braunschweig). 3rd Edition. CPAE 6 (Doc. 42).

  66. Einstein, A. 1918e. Kritisches zu einer von Hrn. De Sitter gegebenen Lösung der Gravitationsgleichungen. Sitz. König. Preuss. Akad. 270–272. Or‘Critical comment on a solution of the gravitational field equations given by Mr. de Sitter’ CPAE 7 (Doc. 5).

  67. Einstein, A. 1919a. Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitz. König. Preuss. Akad. 349–356. Or ‘Do gravitation fields play an essential part in the structure of the elementary particles of matter?’CPAE 7 (Doc. 17).

  68. Einstein, A. 1919b. Bermerkung über periodischen Schwankungen der Mondlänge, welche bisher nach der Newtonschen Mechanik nicht erklärbar schienen. Sitz. König. Preuss. Akad. 433–436. Or ‘Comment about periodical fluctuations of lunar longitude,which so far appeared to be inexplicable in Newtonian mechanics’ CPAE 7 (Doc. 18).

  69. Einstein, A. 1921a. Geometrie und Erfahrung. Springer, Berlin. Or ‘Geometry and Experience’. CPAE 7 (Doc. 52).

  70. Einstein, A. 1921b. Eine einfache Anwendung des Newtonschen Gravitationsgesetzes auf die kugelförmigen Sternhaufen. In Festschrift der Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften. Springer, Berlin. pp 50–52. Or ‘A simple application of the Newtonian law of gravitation to globular star clusters’ CPAE 7 (Doc. 56).

  71. Einstein, A. 1922a. Vier Vorlesungen über Relativitätstheorie. Vieweg, Berlin. Or The Meaning of Relativity. Methuen, London (Transl. E. Adams). CPAE 7 (Doc. 71).

  72. Einstein, A. 1922b. Bemerkung zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes” Zeit. Phys. 11: 326. Or ‘Comment on A. Friedmann’s paper “On The Curvature of Space” CPAE 13 (Doc. 340).

    Article  ADS  MATH  Google Scholar 

  73. Einstein, A. 1923a. Notiz zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes” Zeit. Phys. 16: 228. Or ‘Note to the paper by A. Friedmann “On the Curvature of Space” CPAE 14 (Doc. 51).

    Article  ADS  MATH  Google Scholar 

  74. Einstein, A. 1923b. Notiz zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes”. The Albert Einstein Archives. Doc. 1–26.

  75. Einstein, A. 1923c. Postcard to Hermann Weyl, May 23rd. CPAE 14 (Doc. 40).

  76. Einstein, A. 1931a. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitz. König. Preuss. Akad. 235–237. Eng. transl. (O’Raifeartaigh and McCann 2014).

  77. Einstein, A. 1931b. Zum kosmologischen Problem. Albert Einstein Archive Online, Doc.[2–112]. http://alberteinstein.info/vufind1/Record/EAR000034354. Eng. transl. (O’Raifeartaigh et al. 2014).

  78. Einstein, A. 1933. Sur la structure cosmologique de l’espace (Fr. transl. M. Solovine). In ‘La Théorie de la Relativité’, Hermann, Paris. (Eng. transl. O’Raifeartaigh et al. 2015).

  79. Einstein, A. 1945. On the ‘cosmologic problem’. Appendix I to The Meaning of Relativity. Princeton University Press, Princeton (3rd Ed.) 112–135.

  80. Einstein, A.and W. de Sitter. 1932. On the relation between the expansion and the mean density of the universe. PNAS 18(3): 213–214.

    Article  ADS  MATH  Google Scholar 

  81. Ellis, G.F.R. 2003. A historical review of how the cosmological constant has fared in general relativity and cosmology. Cha. Sol. Fract. 16: 505–512.

    Article  ADS  MATH  Google Scholar 

  82. Ellis, G.F.R. 2011. Editorial note to: Brandon Carter, Large number coincidences and the anthropic principle in cosmology. Gen. Rel. Grav. 43(11): 3213–3223.

    Article  ADS  MATH  Google Scholar 

  83. Ellis, G.F.R. and R. Maartens. 2004. The emergent universe: inflationary cosmology with no singularity. Class. Quant. Gravity 21: 223–239.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Enz, C.P. 1974. Is the Zero-Point Energy Real? In Physical Reality and Mathematical Description (Eds C.P. Enz and J. Mehra) Reidel, Dordrecht. pp 124–132.

  85. Enz, C.P. and A. Thellung. 1960. Nullpunktsenergie und Anordnung nicht vertauschbarer Faktoren im Hamiltonoperator. Helv. Phys. Acta 33: 839–848.

    MathSciNet  MATH  Google Scholar 

  86. Ezquiaga, J.M. and M. Zumalacárregui. 2017. Dark energy after GW170817: Dead ends and the road ahead. Phys. Rev. Lett. 119: 251304–251315.

    Article  ADS  Google Scholar 

  87. Pedro Ferreira, P. 2007. The State of the Universe: A Primer in Modern Cosmology. Phoenix, London. pp 251–254.

  88. Freedman, W.L. et al. 1994. Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids. Nature 371(6500): 757–762.

    Article  ADS  Google Scholar 

  89. Freese, K., Adams, F.C., Frieman, J.A. and E. Mottola. 1987. Cosmology with decaying vacuum energy Nucl. Phys. B 287: 797–814.

    Article  ADS  Google Scholar 

  90. Friedman, A. 1922. Über die Krümmung des Raumes Zeit. Physik. 10: 377–386. Available in English translation as ‘On the curvature of space’ Gen. Rel. Grav. 31(12): 1991–2000 (1999).

    Article  Google Scholar 

  91. Fujii, Y. 2000. Quintessence, scalar-tensor theories and non-Newtonian gravity. Phys. Rev. D 62(4): 4011–4022. ArXiv preprint 9911064.

    Article  ADS  Google Scholar 

  92. Fujii, Y. and T. Nishioka. 1991. Reconciling a small density parameter to inflation. Phys. Lett. B 254: 347–350.

    Article  ADS  Google Scholar 

  93. Gamow, G. 1942. Concerning the origin of chemical elements. JWAS 32(12): 353–335.

    Google Scholar 

  94. Gamow, G. 1946. Expanding universe and the origin of elements. Phys. Rev. 70(7–8): 572–573.

    Article  ADS  Google Scholar 

  95. Gamow, G. 1949. On relativistic cosmogony. Rev. Mod. Phys. 21(3): 367–373.

    Article  ADS  Google Scholar 

  96. Gamow, G. 1956. The evolutionary universe. Sci. Am. 195(3): 136–156.

    Article  Google Scholar 

  97. Gamow, G. 1970. My World Line: An Informal Autobiography. Viking Press, New York.

  98. Gamow, G. and E. Teller. 1939a. On the origin of great nebulae. Phys. Rev. 55: 654–657.

    Article  ADS  MATH  Google Scholar 

  99. Gamow, G. and E. Teller. 1939b. The expanding universe and the origin of the great nebulæ. Nature 143(3612): 116–117.

    Article  ADS  MATH  Google Scholar 

  100. Goldsmith, D. 2000. The Runaway Universe: the Race to Find the Future of the Cosmos. Basic Books, New York.

  101. Goldstein, A. et al. 2017. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848(2): L14–L28.

    Article  ADS  Google Scholar 

  102. Gott, J.R., Gunn, J.E., Schramm, D.N. and B.M. Tinsley. 1974. An unbound universe. Astrophys. J. 194: 543–553.

    Article  ADS  Google Scholar 

  103. Gliner, E.B. 1966. Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. JETP 22: 378–382.

    ADS  Google Scholar 

  104. Guendelman, E.I. 2011. Non-singular origin of the universe and the cosmological constant problem. Int. J. Mod. Phys. D 20(14): 2767–2771.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Guendelman, E.I. and P. Labraña. 2013. Connecting the nonsingular origin of the universe, the vacuum structure and the cosmological constant problem. Int. J. Mod. Phys. D 22(9): 13300181–133001835.

    Article  MathSciNet  MATH  Google Scholar 

  106. Gunn, J.E. 1975. On the mean mass density in the universe. Ann. N.Y. Acad. Sci. 262: 21–29.

    Article  ADS  Google Scholar 

  107. Gunn, J.E. and J.B. Oke, 1975. Spectrophotometry of faint cluster galaxies and the Hubble diagram: an approach to cosmology. Astrophys. J. 195: 255–268.

    Article  ADS  Google Scholar 

  108. Gunn, J.E. and B.M. Tinsley. 1975. An accelerating universe. Nature 257: 454–457.

    Article  ADS  Google Scholar 

  109. Guth, A.H. 1981. The inflationary universe: a possible solution for the horizon and flatness problems. Phys. Rev. D 23: 347–356.

    Article  ADS  MATH  Google Scholar 

  110. Guth, A.H. and S.-Y. Pi. 1982. Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49: 1110–1113.

    Article  ADS  Google Scholar 

  111. Hanany, S. et al. 2000. MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10-5. Astrophys. J. 545(1): L5–L9.

    Article  ADS  Google Scholar 

  112. Harvey, A. 2009. Dark energy and the cosmological constant: a brief introduction. Eur. J. Phys. 30: 877–889.

    Article  MATH  Google Scholar 

  113. Harvey, A. 2012a. The cosmological constant. ArXiv preprint 1211.6337.

  114. Harvey, A. 2012b. How Einstein discovered dark energy. ArXiv preprint 1211.6338.

  115. Harvey, A. and E. Schucking. 2000. Einstein’s mistake and the cosmological constant Am. J. of Phys. 68: 723–728.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Hawking, S.W. 1983. The cosmological constant. Philos. Trans. R. Soc. Lond. A310(1512): 303–309.

    Article  ADS  Google Scholar 

  117. Hawking, S.W. 1984. The cosmological constant is probably zero. Phys. Lett. B 134 (6): 403–404.

    Article  ADS  Google Scholar 

  118. Heckmann, O. 1931. Über die Metrik des sich ausdehnenden Universums. Nach. Gesell. Wiss. Göttingen, Math.-Phys. Klasse 2: 126–131.

    MATH  Google Scholar 

  119. Heckmann, O. 1932. Die Ausdehnung der Welt in ihrer Abhängigkeit von der Zeit. Nach. Gesell. Wiss. Göttingen, Math.-Phys. Klasse 2: 181–190.

    MATH  Google Scholar 

  120. Hoyle, F. 1948. A new model for the expanding universe. MNRAS 108: 372–382.

    Article  ADS  MATH  Google Scholar 

  121. Hoyle, F. 1994. Home Is Where The Wind Blows: Chapters From A Cosmologists’s Life. University Science Books, California.

  122. Hoyle, F. and Burbidge, G.R. 1966. Relation between the redshifts of quasi-stellar objects and their radio magnitudes. Nature 212: 1334.

    Article  Google Scholar 

  123. Hoyle, F. and A. Sandage. 1956. The second-order term in the redshift-magnitude relation. Pub. Ast. Soc. Pac. 68(403): 301–307.

    Article  ADS  Google Scholar 

  124. Hubble, E. 1925. Cepheids in spiral nebulae. The Observatory 48: 139–142.

    ADS  Google Scholar 

  125. Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. PNAS 15: 168–173.

    Article  ADS  MATH  Google Scholar 

  126. Hubble, E. and M.L. Humason. 1931. The velocity-distance relation among extra-galactic nebulae. Astrophys. J. 74: 43–80.

    Article  ADS  Google Scholar 

  127. Humason, M.L., Mayall, N.U. and A.R. Sandage. 1956. Redshifts and magnitudes of extragalactic nebulae. Astron. J. 61: 97–162.

    Article  ADS  Google Scholar 

  128. Huterer, D. and D.L. Shafer. 2017. Dark energy two decades after: observables, probes, consistency tests. To be published in Rep. Prog. Phys. ArXiv preprint 1710.06394.

  129. Jackson, J.C. 1970. The dynamics of clusters of galaxies in universes with non-zero cosmological constant, and the virial theorem mass discrepancy. MNRAS 148: 249–260.

    Article  ADS  Google Scholar 

  130. Jaffe, A.H. et al. 2001. Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. Phys. Rev. Lett. 86(16): 3475–3479.

    Article  ADS  Google Scholar 

  131. Jaffe, R.L. 2005. Casimir effect and the quantum vacuum. Phys. Rev. D 72(2): 021301.

    Article  ADS  Google Scholar 

  132. Jordan, P. and W. Pauli. 1928. Zur Quantenelektrodynamik ladungsfreier Felder. Zeit. Phys. 47: 151–173.

    Article  ADS  MATH  Google Scholar 

  133. Kardashev, N. 1967. Lemaître’s universe and observations. Astrophys. J. 150: L135–L139.

    Article  ADS  Google Scholar 

  134. Kazanas, D. 1980. Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. Lett. 150: L135–L145.

    Google Scholar 

  135. Kirshner, R.P. 2002. The Extravagant Universe: Exploding Stars, Dark Energy and the Accelerating Cosmos. Princeton University Press, Princeton.

  136. Kofman, L.A. and A.A. Starobinsky. 1985. Effect of the cosmological constant on largescaleanisotropies in the microwave background. Sov. Ast. Lett. 11: 271–274.

    ADS  Google Scholar 

  137. Kofman, L. Gnedin, N. and N. Bahcall. 1993. Cosmological constant, COBE cosmic microwave background anisotropy, and large-scale clustering. Astrophys. J. 413(1): 1–9.

    Article  ADS  Google Scholar 

  138. Kolb, E.W. and M.S. Turner. 1990. The Early Universe. Addison-Wesley, New York.

  139. Kragh, H.S. 1996. Cosmology and Controversy. Princeton University Press, Princeton.

  140. Kragh, H.S. 2007. Conceptions of Cosmos: From Myths to the Accelerating Universe: A History of Cosmology. Oxford University Press, Oxford.

  141. Kragh, H. 2010. An anthropic myth: Fred Hoyle’s carbon-12 resonance level. Arch. Hist. Ex. Sci. 64(3): 721–751.

    Article  MathSciNet  Google Scholar 

  142. Kragh, H.S. 2012. Preludes to dark energy: zero-point energy and vacuum speculations. Arch. Hist. Ex. Sci. 66(3): 199–240.

    Article  MathSciNet  Google Scholar 

  143. Kragh, H. 2015. On Arthur Eddington’s theory of everything. ArXiv preprint 1510.04046.

  144. Kragh, H. and D. Lambert. 2007. The context of discovery: Lemaître and the origin of the primeval-atom universe. Ann. Sci. 445–470.

  145. Kragh, H.S. and J.M. Overduin. 2014. The Weight of the Vacuum: A Scientific History of Dark Energy. Springer, Berlin.

  146. Krauss, L.M. 1998. The end of the age problem, and the case for a cosmological constant revisited. Astrophys. J. 501: 461–466.

    Article  ADS  Google Scholar 

  147. Krauss, L.M. and D.N. Schramm. 1993. Angular diameters as a probe of a cosmological constant and Omega. Astrophys. J. 405(2): L43–L46.

    Article  ADS  Google Scholar 

  148. Krauss, L.M. and M.S. Turner. 1995. The cosmological constant is back. Gen. Rel. Grav. 27(11): 1137–1144.

    Article  ADS  MATH  Google Scholar 

  149. Krauss, L.M. and M. White. 1992. Gravitational lensing, finite galaxy cores, and the cosmological constant. Astrophys. J. 394(2): 385–395.

    Article  ADS  Google Scholar 

  150. Lahav, O. and A.R. Liddle. 2016. The cosmological parameters 2016. In The Review of Particle Physics (Particle Data Group). Chin. Phys. C 40(10): 386–393.

    Google Scholar 

  151. Laplace, P.-S. 1846. Mécanique Céleste 5. Book 16, p.481.

  152. Lemaître, G. 1925. Note on de Sitter’s universe. J. Math. Phys. 4: 188–192.

    Article  MATH  Google Scholar 

  153. Lemaître, G. 1927. Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A47: 49–59. See also (Luminet 2013).

    MATH  Google Scholar 

  154. Lemaître,G. 1931a. A homogeneous universe of constant mass and increasing radius, accounting for the radial velocity of the extra-galactic nebulae. MNRAS 91: 483–490.

    Article  ADS  MATH  Google Scholar 

  155. Lemaître, G. 1931b. The beginning of the world from the point of view of quantum theory. Nature 127: 706.

    Article  ADS  MATH  Google Scholar 

  156. Lemaître, G. 1931c. The expanding universe. MNRAS 91: 490–501.

    Article  ADS  MATH  Google Scholar 

  157. Lemaître, G. 1931d. L’expansion de l’espace. Rev. Quest. Sci. 20: 391–410.

    MATH  Google Scholar 

  158. Lemaître, G. 1933. L’ universe en expansion. Ann. Soc. Sci. Brux A53: 51–85. Eng. transl. ‘The expanding universe’ Gen. Rel. Grav. 29(5): 641–680 (1997).

    Google Scholar 

  159. Lemaître, G. 1934. Evolution of the expanding universe. PNAS 20: 12–17.

    Article  ADS  MATH  Google Scholar 

  160. Lemaître, G. 1949. The cosmological constant. In Albert Einstein: Philosopher Scientist, The Library of Living Philosophers VII (Ed. P.A. Schilpp). George Banta, Wisconsin. pp 439–456.

  161. Lemaître, G. 1958. Recontres avec Einstein. Rev. Quest. Sci. 129: 129–132.

    Google Scholar 

  162. Lenz, W. 1926. Das Gleichgewicht von Materie und Strahlung in Einsteins geschlossener Welt. Phys. Zeit. 27: 642–645.

    MATH  Google Scholar 

  163. Linde, A.D., 1974. Is the Lee constant a cosmological constant? JETP Lett. 19: 183–184.

    ADS  Google Scholar 

  164. Linde, A.D. 1982. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108(6): 389–393.

    Article  ADS  Google Scholar 

  165. Linde, A.D. 1984. The inflationary universe. Rep. Prog. Phys. 47: 925–986.

    Article  ADS  MathSciNet  Google Scholar 

  166. Linde, A.D. 1986. Eternal chaotic inflation. Mod. Phys. Lett. A 1(2): 81–85.

    Article  ADS  MathSciNet  Google Scholar 

  167. Linde, A.D. 2008. Inflationary cosmology. In Lect. Notes Phys. 738. Springer, Berlin.

  168. Livio, M. 2013. Brilliant Blunders: from Darwin to Einstein. Simon and Schuster, New York.

  169. Livio, M. and M.J. Rees. 2005. Anthropic reasoning. Science 309: 1022–1023.

    Article  ADS  Google Scholar 

  170. Lombriser, L. and A. Taylor. 2016. Breaking a dark degeneracy with gravitational waves. JCAP 03.031.

  171. Lombriser, L. and N.A. Lima. 2017. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure. Phys. Lett. B 765: 382–385.

    Article  ADS  MATH  Google Scholar 

  172. Longair, M.S. 2006. The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press, Cambridge.

  173. Longair, M.S. and P.A.G. Scheuer. 1967. Red-shift magnitude relation for quasi-stellar objects. Nature 215(5104): 919–922.

    Article  ADS  Google Scholar 

  174. Loveday, J., Efstathiou, G., Peterson, B.A. and S.J. Maddox. 1992. Large-scale structure in the universe – results from the Stromlo-APM redshift survey. Astrophys. J. 400(2): L43–L46.

    Article  ADS  Google Scholar 

  175. Luminet, J.-P. 2013. Editorial note to ‘A homogeneous universe of constant mass and increasing radius, accounting for the radial velocity of the extra-galactic nebulae’. Gen. Rel. Grav. 45(8): 1619–1633.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  176. Maneff, G. 1932. Über das kosmologische Problem der Relativitätstheorie. Zeit. Astrophys. 4: 231–240.

    ADS  MATH  Google Scholar 

  177. McCrea, W.H. 1951. Relativity theory and the creation of matter. Proc. R. Soc. A206(1087): 562–575.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  178. McCrea, W.H. 1971. The cosmical constant. Q. J. R. Ast. Soc. 12: 140–153.

    ADS  Google Scholar 

  179. Milne, E.A. 1933. World-Structure and the Expansion of the Universe. Zeit. Astrophys. 6: 1–95.

    ADS  MATH  Google Scholar 

  180. Milne, A. 1935. Relativity, Gravitation and World Structure. Clarendon Press, Oxford.

  181. Neumann, C. 1896. Allgemeine Untersuchungen über das Newton’sche Prinzip der Fernwirkungen. Teubner, Leipzig.

  182. Milonni, P.W. 1994. The Quantum Vacuum. Academic, New York.

  183. North, J.D. 1965. The Measure of the Universe: A History of Modern Cosmology. Oxford University Press

  184. Nernst, W. 1916. Über einen Versuch, von quantentheoretischen Betrachtungen zur Annahmestetiger Energieänderungen zurückzukehren. Verh. Dtsch. Phys. Ges. 18: 83–116.

    Google Scholar 

  185. Norton, J.D. 1999. The cosmological woes of Newtonian gravitation theory. In ‘The Expanding Worlds of General Relativity: Einstein Studies Vol.7’ (Eds H. Goenner et al.) Birkhäuser, Boston. pp. 271–322.

  186. Nussbaumer, H. 2014a. Einstein’s conversion from his static to an expanding universe. Eur. Phys. J. (H) 39(1): 37–62.

    Google Scholar 

  187. Nussbaumer, H. 2014b. Einstein’s aborted model of a steady-state universe. To be published in “In memoriam Hilmar W. Duerbeck” Acta Historica Astronomiae. (Eds W. Dick et al.). ArXiv preprint 1402.4099.

  188. Nussbaumer, H. and L. Bieri. 2009. Discovering the Expanding Universe. Cambridge University Press, Cambridge.

  189. Oort, J. 1932. The force exerted by the stellar system in a direction perpendicular to the galactic plane and some related problems. Bull. Astron. Inst. Neth. 6: 249–287.

    ADS  MATH  Google Scholar 

  190. O’Raifeartaigh, C. and B. McCann. 2014. Einstein’s cosmic model of 1931 revisited; an analysis and translation of a forgotten model of the universe. Eur. Phys. J. (H) 39(1): 63–85.

    Google Scholar 

  191. O’Raifeartaigh, C., McCann, B., Nahm, W. and S. Mitton. 2014. Einstein’s steady-state theory: an abandoned model of the cosmos. Eur. Phys. J. (H) 39(3):353–369.

    Google Scholar 

  192. O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and S. Mitton. 2015. Einstein’s cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos. Eur. Phys. J. (H) 40(3): 301–336.

    Google Scholar 

  193. O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and S. Mitton. 2017. Einstein’s 1917 static model of the cosmos: a centennial review. Eur. Phys. J. (H) 42(3): 431–474.

    Google Scholar 

  194. Ostriker, J.P. and S. Mitton. 2013. Heart of Darkness: Unravelling the Mysteries of the Invisible Universe. Princeton University Press, Princeton.

  195. Ostriker, J.P. and P.J. Steinhardt. 1995. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377(6550): 600–602.

    Article  ADS  Google Scholar 

  196. Pagels, H.R. 1985. A cozy cosmology. The Sciences 25(2): 34–38.

    Article  Google Scholar 

  197. Pauli, W. 1933. Die allgemeinen Prinzipien der Wellenmechanik. In Handbuch der Physik, Quantentheorie 24(1) (Eds. H. Bethe et al.) Springer, Berlin. pp 83–272.

  198. Pauli, W. 1946. Exclusion principle and quantum mechanics. In Nobel Lectures in Physics 1942–1962. Elsevier, Amsterdam 1964.

  199. Pauli, W. 1958. Theory of Relativity. Pergamon Press, New York.

  200. Peebles, P.J.E. 1976. A cosmic virial theorem. Astrophys. J. Lett. 205: L109–L113.

    Article  ADS  Google Scholar 

  201. Peebles, P.J.E. 1984. Tests of cosmological models constrained by inflation. Astrophys. J. 284: 439–444.

    Article  ADS  Google Scholar 

  202. Peebles, P.J.E. 1986. The mean mass density of the universe. Nature 321: 27–32.

    Article  ADS  Google Scholar 

  203. Peebles, P.J.E. and B. Ratra. 1988. Cosmology with a time-variable cosmological ‘constant’. Astrophys. J. Lett. 325: L17–L20.

    Article  ADS  Google Scholar 

  204. Peebles, P.J.E. and B. Ratra. 2003. The cosmological constant and dark energy. Rev. Mod. Phys. 75(2): 559–606.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  205. Perlmutter, S. et al. 1999. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 517: 565–586.

    Article  ADS  MATH  Google Scholar 

  206. Petrosian, V. 1974. Confrontation of Lemaître models and the cosmological constant with observations. In Confrontation of Cosmological Theories with Observational Data: Proceedings of the 1973 IAU Symposium (Ed. M. Longair) Reidel, Dordrecht.

  207. Petrosian, V. and E. Salpeter. 1970. Lemaître models and the cosmological constant. Comm. Ast. Sp. Phys. 2: 109–115.

    ADS  Google Scholar 

  208. Petrosian, V., E. Salpeter. and P. Szekeres. 1967. Quasi-stellar objects in universes with non-zero cosmological constant. Astrophys. J. 147: 1222–1226.

    Article  ADS  Google Scholar 

  209. Pierce, M.J. et al. 1994. The Hubble constant and Virgo cluster distance from observations of Cepheid variables. Nature 371(6496): 385–389.

    Article  ADS  Google Scholar 

  210. Planck, M. 1911. Eine neue Strahlungshypothese. Verh. Dtsch. Phys. Ges. 13: 138–148.

    MATH  Google Scholar 

  211. Planck Collaboration XIII 2016. Cosmological parameters. Astron. and Astrophys. 594(A13): 1–63.

    Google Scholar 

  212. Ratra, B. and P.J.E. Peebles. 1988. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37(12): 3406–3427.

    Article  ADS  Google Scholar 

  213. Ray, C. 1990. The cosmological constant: Einstein’s greatest mistake? Stud. Hist. Phil. Sci. A 21(4): 589–604.

    Article  MathSciNet  Google Scholar 

  214. Realdi, M. and G. Peruzzi. 2009. Einstein, de Sitter and the beginning of relativistic cosmology in 1917. Gen. Rel. Grav. 41(2): 225–247.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  215. Riess, A.G. et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116: 1009–1038.

    Article  ADS  Google Scholar 

  216. Rindler, W. 1969. Essential Relativity: Special, General, and Cosmological. Van Nostrand, New York.

  217. Robertson, H.P. 1932. The expanding universe. Science 76: 221–226.

    Article  ADS  MATH  Google Scholar 

  218. Robertson, H.P. 1933. Relativistic cosmology. Rev. Mod. Phys. 5(1): 62–90.

    Article  ADS  MATH  Google Scholar 

  219. Robertson, H.P. 1935. Kinematics and world-structure. Astrophys. J. 82: 284–301.

    Article  ADS  MATH  Google Scholar 

  220. Robertson, H.P. 1955. The theoretical aspects of the nebular redshift. Pub. Ast. Soc. Pac. 67(395): 82–98.

    Article  ADS  Google Scholar 

  221. Rowan-Robinson, M. 1968. On cosmological models with an antipole. MNRAS 141: 445–458.

    Article  ADS  Google Scholar 

  222. Rugh, S.E., Zinkernagel, H. and T.Y. Cao. 1999. The Casimir effect and the interpretation of the vacuum. Stud. Hist. Phil. Mod. Phys. 30(1): 111–139.

    Article  MathSciNet  MATH  Google Scholar 

  223. Rugh, S.E. and H. Zinkernagel. 2002. The quantum vacuum and the cosmological constant problem. Stud. Hist. Phil. Mod. Phys. 33(4): 663–705.

    Article  MathSciNet  MATH  Google Scholar 

  224. Sakstein, J. and J. Bhuvnesh. 2017. Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. ArXiv preprint 1710.05893.

  225. Sandage, A.R. 1958. Current problems in the extragalactic distance scale. Astrophys. J. 127: 513–526.

    Article  ADS  Google Scholar 

  226. Sandage, A.R. 1961. The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133: 355–389.

    Article  ADS  MathSciNet  Google Scholar 

  227. Sandage, A.R. 1962. The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136: 319–333.

    Article  ADS  Google Scholar 

  228. Sandage, A.R. 1965. The existence of a major new constituent of the universe: the quasistellar galaxies. Astrophys. J. 141: 1560–1578.

    Article  ADS  Google Scholar 

  229. Sandage, A.R. 1970. Cosmology: a search for two numbers. Phys. Today 23(2): 34–42.

    Article  Google Scholar 

  230. Sandage, A.R. 1995. Practical cosmology: inventing the past. In The Deep Universe (Eds Sandage et al.) Springer, Berlin. pp 1–232.

  231. Sandage, A.R. and G.A. Tammann. 1984. The dynamical parameters of the universe. In Proceedings of the 1983 ESO/CERN Symposium (Eds G. Setti and L. Van Hove): 127–147.

  232. Schmidt, M. 1963. 3C 273: A star-like object with large red-shift. Nature 197 (4872): 1040–1050.

    Article  ADS  Google Scholar 

  233. Schmidt, M. 1965. Large redshifts of five quasi-stellar sources. Astrophys. J. 141: 1295–1300.

    Article  ADS  Google Scholar 

  234. Schmidt, M. and T.A. Matthews. 1964. Redshift of the quasi-stellar radio sources 3C 47 and 3C 147. Astrophys. J. 139: 781–785.

    Article  ADS  Google Scholar 

  235. Schmidt, B.G. et al. 1998. The high-z supernova search: measuring cosmic deacceleration and global curvature of the universe using type 1a supernovae. Astrophys. J. 507: 46–63.

    Article  ADS  Google Scholar 

  236. Schrödinger, E. 1918. Über ein Lösungssystem der allgemein kovarianten Gravitationsgleichungen. Phys. Zeit. 19: 20–22. Transl. excerpts in (Harvey 2012b).

    MATH  Google Scholar 

  237. Schulmann, R., Kox, A.J., Janssen, M. and J. Illy. 1998. The Einstein-deSitter-Weyl-Klein debate. In CPAE 8A p351.

  238. Seeliger, H. von. 1895. Über das Newton’sche Gravitationsgesetz. Astron. Nach. 137: 129–136.

    Article  ADS  MATH  Google Scholar 

  239. Seeliger, H. von. 1896. Über das Newton’sche Gravitationsgesetz. Sitz. König. Bayer. Akad. Wiss. 126: 373–400.

    MATH  Google Scholar 

  240. Seeliger, H. von. 1898a. On Newton’s law of gravitation. Pop. Astron. 5: 474–478.

    ADS  Google Scholar 

  241. Seeliger, H. von. 1898b. On Newton’s law of gravitation. Pop. Astron. 5: 544–551.

    ADS  Google Scholar 

  242. Seitter, W.C. and R. Duemmler. 1989. The cosmological constant – historical annotations. In Morphological Cosmology; Proceedings of the Eleventh Krakow Cosmological School (Eds P. Flin and H. Duerbeck), Springer, Berlin. pp 377–387.

  243. Shapiro, C. and M.S. Turner. 2006. What do we really know about cosmic acceleration? Astrophys. J. 649(2): 563–569.

    Article  ADS  Google Scholar 

  244. Shklovsky, J. 1967. On the nature of “standard” absorption spectrum of the quasi-stellar objects. Astrophys. J. 150: L1–L3.

    Article  ADS  Google Scholar 

  245. Slipher, V.M. 1915. Spectrographic observations of nebulae. Pop. Ast. 23: 21–24.

    ADS  Google Scholar 

  246. Slipher, V.M. 1917. Nebulae. Proc. Am. Phil. Soc. 56: 403–409.

    ADS  Google Scholar 

  247. Smeenk, C. 2005. False vacuum: early universe cosmology and the development of inflation. In The Universe of General Relativity: Einstein Studies Vol. 11. (Eds A.J. Kox and J. Eisenstaedt) Birkhäuser, Boston. pp 223–258.

  248. Smeenk, C. 2013. Philosophy of Cosmology. In The Oxford Handbook of Philosophy of Physics. (Ed. R. Batterman), Oxford University Press, Oxford.

  249. Smeenk, C. 2014. Einstein’s role in the creation of relativistic cosmology. In The Cambridge Companion to Einstein. (Eds M. Janssen and C. Lehner). Cambridge University Press, Cambridge. pp 228–269.

  250. Smith, R. 1982. The Expanding Universe: Astronomy’s Great Debate 1900–1931. Cambridge University Press, Cambridge.

  251. Smoot, G. et al. 1992. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396(1): L1–L5.

    Article  ADS  Google Scholar 

  252. Sparnaay, M.J. 1957. Attractive forces between flat plates. Nature 180(4581): 334–344.

    Article  ADS  Google Scholar 

  253. Spergel, D.N. et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP)observations: determination of cosmological parameters. Astrophys. J. Suppl. 148(1): 175–194.

    Article  ADS  Google Scholar 

  254. Starobinsky, A.A. 1982. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117: 175–178.

    Article  ADS  Google Scholar 

  255. Steinhardt, P.J. 1997. Cosmological challenges for the 21st century. In Critical Problems in Physics: Proceedings of a Conference Celebrating the 250th Anniversary of Princeton University (Eds V.L. Fitch et al.) Princeton University Press, Princeton, p.123.

  256. Steinhardt, P.J. 2003. A quintessential introduction to dark energy. R. Soc. Lond. Trans. A361(1812): 2497–2513.

    Article  ADS  MATH  Google Scholar 

  257. Steinhardt, P.J. and N. Turok. 2002. A cyclic model of the universe. Science 296(5572): 1436–1439.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  258. Steinhardt, P.J. and N. Turok. 2003. The cyclic universe: an informal introduction. Nucl. Phys. B Proc. Suppl. 124: 38–49.

    Article  ADS  MATH  Google Scholar 

  259. Steinhardt, P.J. and N. Turok. 2006. Why the cosmological constant is small and positive. Science 312(5777): 1180–1183.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  260. Straumann, N. 1999. The mystery of the cosmic vacuum energy density and the accelerated expansion of the Universe. Eur. J. Phys. 20(6): 419–427.

    Article  Google Scholar 

  261. Straumann, N. 2002. The history of the cosmological constant problem. In On the Nature of Dark Energy: Proceedings of the 18th IAP Astrophysics Colloquium. (Ed. P. Brax et al.) Frontier Group (Paris). ArXiv preprint 0208027.

  262. Straumann, N. 2013. General Relativity. Springer, Berlin (2nd ed.)

  263. Tammann, G.A. 1979. Precise determination of the distances of galaxies. IAU Coll. 54: 263–293.

    ADS  Google Scholar 

  264. Tammann, G.A., Sandage, A.R. and A. Yahil. 1979. The determination of cosmological parameters. In Lecture Notes for the 1979 Les Houches Summer School, Basel, Switzerland.

  265. Taylor, E.F.and J.A. Wheeler. 2000. Exploring Black Holes: Introduction to General Relativity. Addison Wesley, San Francisco.

  266. Tinsley, B.M. 1975. The evolution of galaxies and its significance for cosmology. Ann. NY Acad.Sci. 262: 436–448.

    Article  ADS  Google Scholar 

  267. Tinsley, B.M. 1978. Accelerating universe revisited. Nature 273: 208–211.

    Article  ADS  Google Scholar 

  268. Tolman, R. 1929. On the astronomical implications of the de Sitter line element for the universe. PNAS 69: 245–274.

    Google Scholar 

  269. Tolman, R.C. 1930. More complete discussion of the time-dependence of the non-static line element for the universe. PNAS 16: 409–420.

    Article  ADS  MATH  Google Scholar 

  270. Tolman, R.C. 1931a. On the theoretical requirements for a periodic behaviour of the universe. Phys. Rev. 38: 1758–1771.

    Article  ADS  MATH  Google Scholar 

  271. Tolman, R.C. 1931b. Letter to Albert Einstein. September 14th. Albert Einstein Archive. 23–31.

  272. Tolman, R.C. 1932. Models of the Physical Universe. Science 75(1945): 367–373.

    Article  ADS  MATH  Google Scholar 

  273. Tolman, R.C. 1934. Relativity, Thermodynamics and Cosmology. Oxford University Press, Oxford.

  274. Tolman, R.C. and M. Ward. 1932. On the behaviour of non-static models of the universe when the cosmological term is omitted. Phys. Rev. 39: 835–843.

    Article  ADS  MATH  Google Scholar 

  275. Topper, D.R. 2013. How Einstein Created Relativity out of Physics and Astronomy. Springer, New York.

  276. Turner, M.S. 1997. The Case for Λ CDM. ArXiv preprint 9703161.

  277. Turner, M.S. 1999a. Cosmology solved? Maybe. Nuc. Phys. B Proc. Suppl. 72(1–3): 69–80.

    Article  ADS  Google Scholar 

  278. Turner, M.S. 1999b. Dark Matter and dark energy in the Universe. In The Third Stromlo Symposium: The Galactic Halo (Eds. B.K. Gibson et al.) ASP Conf. Ser. 165: 431–435.

    ADS  Google Scholar 

  279. Turner, M.S. and D. Huterer. 2007. Cosmic acceleration, dark energy, and fundamental physics. J. Phys. Soc. Jap. 76(11): 10151–10159.

    Article  Google Scholar 

  280. Turner, M.S. and M. White. 1997. CDM models with a smooth component. Phys. Rev. D 56(8): 4439–4443.

    Article  ADS  Google Scholar 

  281. Turner, M.S., Steigman, G. and L.M. Krauss. 1984. Flatness of the universe: reconciling theoretical prejudices with observational data. Phys. Rev. Lett. 52(23):2090–2093.

    Article  ADS  Google Scholar 

  282. Veltman, M., 1975. Cosmology and the Higgs mass. Phys. Rev. Lett. 34(12): 777–779.

    Article  ADS  Google Scholar 

  283. Vilenkin, A. 1983. Birth of inflationary universes. Phys. Rev. D 27(12): 2848–2855.

    Article  ADS  MathSciNet  Google Scholar 

  284. Vilenkin, A. 1995. Predictions from quantum cosmology. Phys. Rev. Lett. 74(6): 846–849.

    Article  ADS  MathSciNet  Google Scholar 

  285. Walker, A.G. 1937. On Milne’s world structure. Proc. Lond. Math. Soc. S242(1): 90–12.

    Article  MathSciNet  MATH  Google Scholar 

  286. Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley and Sons, New York.

  287. Weinberg, S. 1987. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59(22): 2607–2610.

    Article  ADS  Google Scholar 

  288. Weinberg, S. 1989. The cosmological constant problem. Rev. Mod. Phys. 61(1): 1–23.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  289. Weyl, H. 1918. Gravitation und Elektrizität. Sitz. König. Preuss. Akad.: 465–478.

  290. Wright, et al. 1992. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer. Astrophys. J. 396(1): L13–L18.

    Article  ADS  Google Scholar 

  291. Zaycoff, R. 1932. Zur relativistichen Kosmogonie. Zeit. Astrophys. 6: 128–197.

    ADS  MATH  Google Scholar 

  292. Zel’dovich, Y.B. 1967. Cosmological constant and elementary particles. JETP Lett. 6: 316–317.

    ADS  Google Scholar 

  293. Zel’dovich, Y.B. 1968. The cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 11: 381–393. Republished with editorial notes in Gen. Rel. Grav. 40: 1557–1591 (2008).

    Article  ADS  Google Scholar 

  294. Zumino, B. 1975. Supersymmetry and the vacuum. Nucl. Phys. B 89(3): 535–546.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac O’Raifeartaigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. et al. One hundred years of the cosmological constant: from “superfluous stunt” to dark energy. EPJ H 43, 73–117 (2018). https://doi.org/10.1140/epjh/e2017-80061-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2017-80061-7

Navigation