Skip to main content

Advertisement

Log in

Investigation of human β-defensins 1, 2 and 3 in human saliva by molecular dynamics

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Human β-defensins present in saliva have a broad spectrum of antimicrobial activities that work against infections in oral cavity. To provide a better understanding of these molecules’ properties and functions at the molecular level, we have investigated and compared the important structural properties of human β-defensin-1, -2 and -3 using molecular dynamics simulations. Our results have shown that human β-defensin-3 has a more flexible structure in water than the other two because of its high hydrophilicity, low β-sheet content and high repulsive forces between its charged residues. Moreover, we found that the location of the salt bridges is important in protein's stability in water.

Graphical Abstract

Molecular dynamics simulations of human β-defensins 1, 2 and 3 revealed that the hbd-3 is more flexible in water than hbd-1 and hbd-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.A. Young, C.A. Schneyer, Aust. J. Exp. Biol. Med. Sci. 59, 1–53 (1981)

    Article  Google Scholar 

  2. S.-U. Gorr, Front. Oral Biol. 15, 84–98 (2012)

    Article  Google Scholar 

  3. B.A. Dale, S. Krisanaprakornkit, J. Oral Pathol. Med. 30, 321–327 (2001)

    Article  Google Scholar 

  4. K.W. Bensch, M. Raida, H.J. Mägert, P. Schulz-Knappe, W.G. Forssmann, FEBS Lett. 368, 331–335 (1995)

    Article  Google Scholar 

  5. J. Harder, J. Bartels, E. Christophers, J.M. Schröder, Nature 387, 861 (1997)

    Article  ADS  Google Scholar 

  6. E. Pisano, T. Cabras, C. Montaldo, V. Piras, R. Inzitari, C. Olmi, M. Castagnola, I. Messana, Eur. J. Oral Sci. 113, 462–468 (2005)

    Article  Google Scholar 

  7. K.T. Chong, L. Xiang, X. Wang, E.L. Jun, L. Xi, J.M. Schweinfurth, Virol. J. 3, 75 (2006)

    Article  Google Scholar 

  8. H. Dommisch, Y. Acil, A. Dunsche, J. Winter, S. Jepsen, Oral Microbiol. Immunol. 20, 186–190 (2005)

    Article  Google Scholar 

  9. H.I. Kawsara, A. Weinberga, S.A. Hirschb, A. Venizelosa, S. Howellc, B. Jianga, G. Jina, Oral Oncol. 45, 696–702 (2009)

    Article  Google Scholar 

  10. S. Han, B.M. Bishopb, M.L. van Hoek, Biochem. Biophys. Res. Commun. 371, 670–674 (2008)

    Article  Google Scholar 

  11. X.F. Wang, F. Tian, R.M. Cao, J. Li, S.M. Wu, X.K. Guo, T.X. Chen, Nat. Prod. Res. 29, 2164–2166 (2015)

    Article  Google Scholar 

  12. V. Krishnakumari, N. Rangaraj, R. Nagaraj, Antimicrob. Agents Chemother. 53, 256–260 (2009)

    Article  Google Scholar 

  13. Z. Feng, B. Jiang, J. Chandra, M. Ghannoum, S. Nelson, A. Weinberg, J. Dent. Res. 8, 445–450 (2005)

    Article  Google Scholar 

  14. S. Joly, C. Maze, P.B. McCray Jr., J.M. Guthmiller, J. Clin. Microbiol. 42, 1024–1029 (2004)

    Article  Google Scholar 

  15. J.D. Schibli, H.N. Hunter, V. Aseyev, T.D. Starner, J.M. Wiencek, P.B. McCray Jr., B.F. Tack, H.J. Vogel, J. Biol. Chem. 277, 8279–8289 (2002)

    Article  Google Scholar 

  16. E. Nishimura, A. Eto, M. Kato, S. Hashizume, S. Imai, T. Nisizawa, N. Hanada, Curr. Microbiol. 48, 85–87 (2004)

    Article  Google Scholar 

  17. S. Crovella, N. Antcheva, I. Zelezetsky, M. Boniotto, S. Pacor, M.V. Verga Falzacappa, A. Tossi, Curr. Protein Pept. Sci. 6, 7–21 (2005)

    Article  Google Scholar 

  18. A.A. Patil, Y. Cai, Y. Sang, F. Blecha, Physiol. Genomic 23, 5–17 (2005)

    Article  Google Scholar 

  19. A.I. Maxwell, G.M. Morrison, J.R. Dorin, Mol. Immunol. 40, 413–421 (2003)

    Article  Google Scholar 

  20. F. Bauer, K. Schweimer, E. Klüver, J.-R. Conejo-Garcia, W.-G. Forssmann, P. Rösch, K. Adermann, H. Sticht, Protein Sci. 10, 2470–2479 (2001)

    Article  Google Scholar 

  21. Z. Khurshid, M. Naseem, Z. Sheikh, S. Najeeb, S. Shahab, M.S. Zafar, Saudi Pharm. J. 24, 515–524 (2016)

    Article  Google Scholar 

  22. S.U. Gorr, Periodontol 2000 51, 152–180 (2009)

    Article  Google Scholar 

  23. A. Weinberg, G. Jin, S. Sieg, T.S. McCormick, Front. Immunol. 2012(3), 1–9 (2012)

    Google Scholar 

  24. Y. Abiko, M. Nishimura, T. Kaku, Med. Electron. Microsc. 36, 247–252 (2003)

    Article  Google Scholar 

  25. G.N. Guncu, D. Yilmaz, E. Kononen, U.K. Gursoy, Front. Cell Infect. Microbiol. 5, 1–6 (2015)

    Article  Google Scholar 

  26. G. Diamond, L.K. Ryan, Oral Dis. 17, 628–635 (2011)

    Article  Google Scholar 

  27. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  28. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269–6271 (1987)

    Article  Google Scholar 

  29. B. Hess, H. Bekker, H. Berendsen, J. Fraaije, J. Comput. Chem. 18, 1463–1472 (1997)

    Article  Google Scholar 

  30. T. Darden, D. York, L. Pedersen, J. Phys. Chem. 98, 10089–10092 (1993)

    Article  Google Scholar 

  31. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)

    Article  ADS  Google Scholar 

  32. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182–7190 (1981)

    Article  ADS  Google Scholar 

  33. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. Model. 14, 33–38 (1996)

    Article  Google Scholar 

  34. C. Oostenbrink, A. Villa, A. Mark, W. Van Gunsteren, J Comput Chem. 25, 1656–1676 (2004)

    Article  Google Scholar 

  35. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2, 19–25 (2015)

    Article  ADS  Google Scholar 

  36. MYu. Lobanov, N.S. Bogatyreva, O.V. Galzitskaya, Mol. Biol. 42, 623–628 (2008)

    Article  Google Scholar 

  37. W. Kabsch, C. Sander, Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  38. J.S. Richardson, Nature 268, 495–500 (1977)

    Article  ADS  Google Scholar 

  39. A. Perczel, Z. Gaspari, I.G. Csizmadia, J Comput Chem. 26, 1155–1168 (2005)

    Article  Google Scholar 

  40. M. Tsutsumi, J.M. Otaki, J Chem Inf Model. 51, 1457–1464 (2011)

    Article  Google Scholar 

  41. Y.-L. Zhao, Y.-D. Wu, J Am Chem Soc 124, 1570–1571 (2002)

    Article  Google Scholar 

  42. S. Kumar, R. Nussinov, ChemBioChem 3, 604–617 (2002)

    Article  Google Scholar 

  43. M. Qin, W. Wanga, D. Thirumalai, PNAS 112, 11241–11246 (2015)

    Article  ADS  Google Scholar 

  44. W.-S. Zhao et al., J. Biol. Chem 291, 7990–8003 (2016)

    Article  Google Scholar 

  45. X. Ban et al., Comput. Struct. Biotechnol. J. 17, 895–903 (2019)

    Article  Google Scholar 

  46. S.S. Dominy et al., Sci. Adv. 5(eaau3333), 1–21 (2019)

    Google Scholar 

  47. S. Sapkota, T. Huan, T. Tran, J. Zheng, R. Camicioli, L. Li, R.A. Dixon, Front Aging Neurosci. 10, 1–13 (2018)

    Article  Google Scholar 

  48. R.A. Toubar et al., J. Biomol. Struct. Dyn. 31, 174–194 (2012)

    Article  Google Scholar 

  49. L. Zhang, Proteins 85, 665–681 (2017)

    Article  Google Scholar 

  50. M.D. Ghafari et al., Int. J. Pept. Res. Ther. 26, 2039–2056 (2020)

    Article  Google Scholar 

  51. L. Rani et al., BBA Biomembr. 1864, 183824 (2022)

    Article  Google Scholar 

  52. R. Yeasmin et al., ACS Omega 6(21), 13926–13939 (2021)

    Article  Google Scholar 

  53. L. Zhang, J. Chem. Inf. Model 61(9), 4670–4686 (2021)

    Article  ADS  Google Scholar 

  54. X. Kang, C. Elson, J. Penfield et al., Commun. Biol. 2, 402 (2019)

    Article  Google Scholar 

  55. W.W. Chen et al., Mol. Simul. 39, 849–859 (2013)

    Article  Google Scholar 

  56. L. Zhang et al., bioRxiv Preprint. (2021). https://doi.org/10.1101/2021.01.07.425621

    Article  Google Scholar 

  57. J. Lee, S.W. Jung, A.E. Cho, Langmuir 32, 1782–1790 (2016)

    Article  Google Scholar 

  58. F.R. Souza, L.M.P. Souza, A.S. Pimentel, Colloids Surf. B 182, 110357 (2019)

    Article  Google Scholar 

  59. M. Boniotto et al., Biochem. J. 374, 707–714 (2003)

    Article  Google Scholar 

  60. V. Dhople, A. Krukemeyer, A. Ramamoorthy, Biochim. et Biophys. Acta (BBA) Biomembr. 1758, 1499–1512 (2006)

    Article  Google Scholar 

  61. K. Santosh et al., Front Oncol. 9, 341 (2019)

    Article  Google Scholar 

  62. C.P. Hill et al., Science 251, 1481–1485 (1991)

    Article  ADS  Google Scholar 

  63. Y. Rabeta et al., J. Phys. Chem. B 122, 11883–11894 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources). We would like to thank Dr. E. S. Tasci for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Computer simulations were carried out by EDT. Relevance with dentistry was written and provided by MC.

Corresponding author

Correspondence to E. Deniz Tekin.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Data availability

All data generated or analyzed during this study are included in this published article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2553 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz Tekin, E., Calisir, M. Investigation of human β-defensins 1, 2 and 3 in human saliva by molecular dynamics. Eur. Phys. J. E 45, 100 (2022). https://doi.org/10.1140/epje/s10189-022-00257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00257-4

Navigation