Skip to main content
Log in

Phenomenological bifurcation in a generally stochastic population model with Allee effect

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A general population model with Allee effect driven by correlated additive and multiplicative white noises is considered. This paper aims to investigate noise-induced phenomenological bifurcation (P-bifurcation) and the influence of noises on the population model. With the help of Fokker–Planck equation, we obtain the stationary probability distribution (SPD) of the model, and find that the shape of SPD experiences a transition from one structure to another when the noise intensity passes through a critical value, i.e., the P-bifurcation occurs. Moreover, detailed analysis and simulations for stochastic logistic-like models with weak and strong Allee effects show that the correlated noises have complex effects on the eventual distribution of population size.

Graphical abstract

This paper aims to investigate noise-induced phenomenological bifurcation (P-bifurcation) for a general population model with Allee effect driven by correlated additive and multiplicative white noises. We find that the shape of SPD experiences a transition from one structure to another when the noise intensity passes through a critical value, i.e., the P-bifurcation occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.T. Odum, W.C. Allee, A note on the stable point of populations showing both intraspecific cooperation and disoperatio. Ecology 35, 95–97 (1954)

    Article  Google Scholar 

  2. B. Dennis, Allee effects in stochastic populations. Oikos 96, 389–401 (2002)

    Article  Google Scholar 

  3. C. Carlos, C.A. Braumann, General population growth models with Allee effects in a random environment. Ecol. Complex. 30, 26–33 (2017)

    Article  Google Scholar 

  4. Y. Kang, O. Udiani, Dynamics of a single species evolutionary model with Allee effects. J. Math. Anal. Appl. 418, 492–515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Morozov, S. Petrovskii, B. Li, Bifurcations and chaos in a predator-prey system with the Allee effect. Proc. R. Soc. Lond. B 271, 1407–1414 (2004)

    Article  Google Scholar 

  6. S.V. Petrovskii, A.Y. Morozov, E. Venturino, Allee effect makes possible patchy invasion in a predator-prey system. Ecol. Lett. 5, 345–352 (2002)

    Article  Google Scholar 

  7. G. Sun, Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  8. X. Liu, G. Fan, T. Zhang, Evolutionary dynamics of single species model with Allee effect. Physica A 526, 120774 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Wei, Y. Xia, T. Zhang, Stability and bifurcation analysis of an amensalism model with weak Allee effect. Qual. Theory Dyn. Syst. 19, 23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Liu, T. Zhang, X. Liu, Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach. Physica A 549, 124323 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Z. Wei, Y. Xia, T. Zhang, Stability and bifurcation analysis of a commensal model with additive Allee effect and nonlinear growth rate. Int. J. Bifurcat. Chaos 31, 2150204 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Liu, C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting. J. Math. Biol. 73, 597–625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Yu, S. Yuan, T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment. Appl. Math. Comput. 347, 249–264 (2019)

    MathSciNet  MATH  Google Scholar 

  15. W. Zhang, S. Zhao, X. Men, T. Zhang, Evolutionary analysis of adaptive dynamics model under variation of noise environment. Appl. Math. Model. 84, 222–239 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. F.A. Rihan, H.J. Alsakaji, Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete Contin. Dyn. Syst. Ser. S 15, 245–263 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Belabbas, A. Ouahab, F. Souna, Rich dynamics in a stochastic predator-prey model with protection zone for the prey and multiplicative noise applied on both species. Nonlinear Dyn. 106, 2761–2780 (2021)

    Article  Google Scholar 

  18. M. Krstić, M. Jovanović, On stochastic population model with the Allee effect. Math. Comput. Model. 52, 370–379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Q. Yang, D. Jiang, A note on asymptotic behaviors of stochastic population model with Allee effect. Appl. Math. Model. 35, 4611–4619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Q. Zhang, D. Jiang, Y. Zhao, D. O’Regan, Asymptotic behavior of a stochastic population model with Allee effect by Lévy jumps. Nonlinear Anal. Hybrid Syst. 24, 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Yu, S. Yuan, T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching. Commun. Nonlinear Sci. Numer. Simul. 59, 359–374 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A.J.R. Madureira, P. Hänggi, H.S. Wio, Giant suppression of the activation rate in the presence of correlated white noise sources. Phys. Lett. A 217, 248–252 (1996)

    Article  ADS  Google Scholar 

  23. B. Ai, X. Wang, G. Liu, L. Liu, Correlated noise in a logistic growth model. Phys. Rev. E 67, 022903 (2003)

    Article  ADS  Google Scholar 

  24. X. Wang, C. Zeng, X. Deng et al., Effects of cross-correlation colour noises on tumour growth process. Chin. Phys. Lett. 22, 2437–2439 (2005)

    Article  ADS  Google Scholar 

  25. D. Mei, C. Xie, L. Zhang, The stationary properties and the state transition of the tumor cell growth mode. Eur. Phys. J. B 41, 107–112 (2004)

    Article  ADS  Google Scholar 

  26. D. Wu, L. Cao, S. Ke, Bistable kinetic model driven by correlated noises: Steady-state analysis. Phys. Rev. E 50, 2496–2502 (1994)

    Article  ADS  Google Scholar 

  27. Y. Jia, J. Li, Steady-state analysis of a bistable system with additive and multiplicative noises. Phys. Rev. E 53, 5786–5792 (1996)

    Article  ADS  Google Scholar 

  28. L. Arnold, Random Dynamical System (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  29. Z. Huang, Q. Yang, J. Cao, Stochastic stability and bifurcation for the chronic state in Marchuk’s model with noise. Appl. Math. Model. 35, 5842–5855 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E 81, 011106 (2010)

  31. C. Liu, L. Yu, Q. Zhang, Y. Li, Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations. Appl. Math. Comput. 316, 115–134 (2018)

  32. K. Wang, H. Ye, Y. Wang, P. Wang, Impact of time delay and non-Gaussian noise on stochastic resonance and stability for a stochastic metapopulation system driven by a multiplicative periodic signal. Fluct. Noise Lett. 18(3), 1950017 (2019)

    Article  ADS  Google Scholar 

  33. C. Xu, S. Yuan, Richards growth model driven by multiplicative and additive colored noises: Steady-state analysis. Fluct. Noise Lett. 19(4), 2050032 (2020)

    Article  ADS  Google Scholar 

  34. C. Xu, Effects of colored noises on the statistical properties of a population growth model with Allee effect. Phys. Scr. 95, 075215 (2020)

    Article  ADS  Google Scholar 

  35. C. Xu, Phenomenological bifurcation in a stochastic logistic model with correlated colored noises. Appl. Math. Lett. 101, 106064 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the grants from National Natural Science Foundation of China (12161005, 62173161, 11801224) and Natural Science Foundation of Jiangsu Province (BK20180856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcui Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Phenomenological bifurcation in a generally stochastic population model with Allee effect. Eur. Phys. J. E 45, 87 (2022). https://doi.org/10.1140/epje/s10189-022-00235-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00235-w

Navigation