Skip to main content
Log in

A numerical coupling method for particle tracking in electromagnetic fields

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

With the arrival of the information age, the electromagnetic energy in space increases constantly, resulting in the influence of electromagnetic waves on the charged aerosol particles in the environment which should be taken into account. Here, a numerical coupling method based on temporal and spatial scales is proposed to solve the difficulty in obtaining the trajectory of particles under the action of high-frequency electromagnetic waves. In the temporal scale, two constant forces with linear relationship are used to equilibrate the electromagnetic field forces under different conditions, however the above-mentioned equivalent method has the space limitation; in addition, on the spatial scale, the model with larger geometry should be divided into multiple basic modules spatially, the domain division method is adopted and due to the above method it can be used well in the basic module. Verified the correctness through the comparison of the results, and compared with the traditional method, the above method greatly reduces the computational complexity. Some interesting results were obtained by calculating the modulated waves with the above method, which indicate that special forms of electromagnetic waves will significantly affect the motion of particles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (John Wiley & Sons, 2012)

  2. Y. Wang, J. Kangasluoma, M. Attoui, J. Fang, Combust. Flame 176, 72 (2017)

    Article  Google Scholar 

  3. M. Shimada, K. Okuyama, Y. Kousaka, Y. Okuyama, J.H. Seinfeld, J. Colloid Interface Sci. 128, 157 (1989)

    Article  ADS  Google Scholar 

  4. P.J. Sides, Langmuir 17, 5791 (2001)

    Article  Google Scholar 

  5. D. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003)

    Article  ADS  Google Scholar 

  6. M. Trau, D.A. Saville, I.A. Aksay, Langmuir 13, 6375 (1997)

    Article  Google Scholar 

  7. Paul J. Sides, Langmuir 17, 5791 (2001)

    Article  Google Scholar 

  8. Mani Diba, Aldo R. Boccaccini, Prog. Mater. Sci. 82, 83 (2016)

    Article  Google Scholar 

  9. B. Yafouz, N.A. Kadri, H.A. Rothan, R. Yusof, Electrophoresis 37, 511 (2016)

    Article  Google Scholar 

  10. M. Alshareef, N. Metrakos, E.J. Perez, F. Azer, F. Yang, Biomicrofluidics 7, 011803 (2013)

    Article  Google Scholar 

  11. K. Graham, H. Mulhall, F. Labeed, M. Lewis, K. Hoettges, Analyst 140, 5198 (2015)

    Article  ADS  Google Scholar 

  12. Yongpin P. Chen, Wei E.I. Sha et al., Comput. Phys. Commun. 215, 63 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. William L. Oberkampfa, Timothy G. Trucanob, Prog. Aerospace Sci. 38, 209 (2002)

    Article  ADS  Google Scholar 

  14. P.V. Nikitin, K.V.S. Rao, IEEE Trans. Antennas Propag. 54, 1906 (2006)

    Article  ADS  Google Scholar 

  15. Q. Wu, F. Shi, Int. J. Comput. Math. 94, 1943 (2017)

    Article  MathSciNet  Google Scholar 

  16. H.J. Landau, Proc. IEEE 55, 10 (1967)

    Article  Google Scholar 

  17. Allen Taflove, Proc. IEEE 77, 5 (1989)

    Google Scholar 

  18. V.V. Zamaruiev, IEEE First Ukraine Conference on Electrical and Computer Engineering (Ukrcon) (IEEE, 2017) pp. 522--527

  19. S.Q. Li, J.S. Marshall, G.Q. Liu, Q. Yao, Prog. Energy Combust. Sci. 37, 633 (2011)

    Article  Google Scholar 

  20. H.C. Brinkman, Appl. Sci. Res. Sect. A: Mech. Heat Chem. Eng. Math. Methods 1, 27 (1947)

    Article  Google Scholar 

  21. E. Rolls, R. Erban, J. Chem. Phys. 148, 194111 (2018)

    Article  ADS  Google Scholar 

  22. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000)

  23. H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Chem. Eng. Sci. 62, 3378 (2007)

    Article  Google Scholar 

  24. E.E. Michaelides, J. Fluids Eng. 138, 051303 (2016)

    Article  Google Scholar 

  25. J.S. Marshall, J. Comput. Phys. 228, 1541 (2009)

    Article  ADS  Google Scholar 

  26. Y.P.P. Chen, W.E.I. Sha, L.J. Jiang, Comput. Phys. Commun. 215, 63 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.S. Berrouk, C.L. Wu, Chem. Eng. J. 160, 810 (2010)

    Article  Google Scholar 

  28. D.R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, H. Tsukamoto, Int. J. Multiphase Flow 43, 85 (2012)

    Article  Google Scholar 

  29. A. Shaikh, M.H. Al-Dahhan, Int. J. Chem. React. Eng. 5, 1 (2007)

    Google Scholar 

  30. Y.Q. Huang, J.C. Li, J. Comput. Appl. Math. 235, 3932 (2011)

    Article  MathSciNet  Google Scholar 

  31. Y. Wang, J. Jiang, W. Cai, J. Math. Phys. 52, 123701 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. E.J. Hinch, J. Fluid Mech. 72, 499 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Fuchs, R. Daisley, M. Fuchs, C. Davies, M. Straumanis, Phys. Today 18, 73 (1965)

    Article  Google Scholar 

  34. M.A. Islam, Phys. Scr. 70, 120 (2004)

    Article  ADS  Google Scholar 

  35. J. Tothova, V. Lisy, Acta Phys. Slovaca 65, 1 (2015)

    Google Scholar 

  36. J.C. Duan, J.H. Tan, Atmos. Environ. 74, 93 (2013)

    Article  ADS  Google Scholar 

  37. X. Xu, T. Zhao, F. Liu, S.L. Gong, Atmos. Chem. Phys. 16, 1365 (2016)

    Article  ADS  Google Scholar 

  38. Q. Zhang, J.N. Quan, X.X. Tie, X. Li, Q. Liu, Y. Gao, D.L. Zhao, Sci. Total Environ. 502, 578 (2015)

    Article  ADS  Google Scholar 

  39. G.J. Zheng, F.K. Duan, H. Su, Atmos. Chem. Phys. 15, 2969 (2015)

    Article  ADS  Google Scholar 

  40. Z. Zhang et al., Sci. Rep. 8, 5504 (2018)

    Article  ADS  Google Scholar 

  41. Z. RenHe, Q. Li, R. Zhang, Sci. China Earth Sci. 57, 26 (2013)

    Article  Google Scholar 

  42. W. Cai, K. Li, H. Liao, H. Wang, L. Wu, Nat. Clim. Change 7, 257 (2017)

    Article  ADS  Google Scholar 

  43. H. Burtscher, J. Aerosol Sci. 23, 549 (1992)

    Article  ADS  Google Scholar 

  44. R.J. Robinson, C.P. Yu, J. Aerosol Sci. 30, 533 (1999)

    Article  ADS  Google Scholar 

  45. A.K. Dhami, Women Phys. 1517, 236 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Yang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, H., Yang, X., Wu, S. et al. A numerical coupling method for particle tracking in electromagnetic fields. Eur. Phys. J. E 42, 48 (2019). https://doi.org/10.1140/epje/i2019-11810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11810-3

Keywords

Navigation