Skip to main content
Log in

A simple stochastic lattice gas model for H1N1 pandemic. Application to the Italian epidemiological data

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We construct a very simple epidemic model for influenza spreading in an age-class-distributed population, by coupling a lattice gas model for the population dynamics with a SIR stochastic model for susceptible, infected and removed/immune individuals. We use as a test case the age-distributed Italian epidemiological data for the novel influenza A(H1N1). The most valuable features of this model are its country-independent and virus-independent structure (few demographic, social and virological data are used to fix some parameters), its large statistic due to a very short run-time machine, and its easy generalizability to include mitigation strategies. In spite of its simplicity, the model presented reproduces the epidemiological Italian data, with sensible predictions for the reproduction number and theoretically interesting results for the generation time distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.K. Taubenberger, A.H. Reid, R.M. Lourens, R. Wang, G. Jin, Nature 437, 889 (2005)

    Article  ADS  Google Scholar 

  2. N.P. Johnson, J. Mueller, Bull. Hist. Med. Spring 76, 105 (2002)

    Article  Google Scholar 

  3. J.S. Koen, Am. J. Vet. Med. 14, 468 (1919)

    Google Scholar 

  4. P.P. Laidlaw, Lancet 1, 1118 (1935)

    Article  Google Scholar 

  5. W.I.B. Beveridge, New Scientist 23, 790 (1978)

    Google Scholar 

  6. S.E. Lindstrom, N.J. Cox, A. Klimov, Virology 328, 101 (2004)

    Article  Google Scholar 

  7. C. Scholtissek, W. Rohde, V. Von Hoyningen, R. Rott, Virology 87, 13 (1978)

    Article  Google Scholar 

  8. Center for Disease Control, MMWR. 58, 400 (2009)

    Google Scholar 

  9. Center for Disease Control, MMWR. 58, 467 (2009)

    Google Scholar 

  10. V. Trifonov, H. Khiabanian, B. Greenbaum, R. Rabadan, Euro Surveill. 14, 19193 (2009)

    Google Scholar 

  11. C. Scholtissek, Med Princip Prac. 2, 65 (1990)

    Google Scholar 

  12. W.O. Kermack, A.G. McKendrick, Proc. R. Soc. London, Ser. A 115, 700 (1927)

    Article  ADS  MATH  Google Scholar 

  13. R.M. Anderson, R.M. May, Infectious Diseases of Humans (Oxford University Press, Oxford, UK, 1991)

  14. L.A. Rvachev, I.M. Longini, Math. Biosci. 75, 3 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Hufnagel, D. Brockmann, T. Geisel, Proc. Natl. Acad. Sci. U.S.A. 101, 15124 (2004)

    Article  ADS  Google Scholar 

  16. T.C. Germann, K. Kadau, I.M. Longini, C.A. Macken, Proc. Natl. Acad. Sci. U.S.A. 103, 5935 (2006)

    Article  ADS  Google Scholar 

  17. N.M. Ferguson, D.A.T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, D.S. Burke, Nature 437, 209 (2005)

    Article  ADS  Google Scholar 

  18. H. Yasuda, K. Suzuki, Euro Surveill. 14, 19385 (2009)

    Google Scholar 

  19. L.R. Elveback, J.P. Fox, E. Ackerman, A. Langworthy, M. Boyd, L. Gatewood, Am. J. Epidemiol. 103, 152 (1976)

    Google Scholar 

  20. S. Merler, M. Ajelli, Proc. R. Soc. B 277, 557 (2010)

    Article  Google Scholar 

  21. M.L. Ciofi degli Atti, S. Merler, C. Rizzo, M. Ajelli, M. Massari, P. Manfredi, C. Furlanello, G. Scalia Tomba, M. Iannelli, PLoS ONE 3 e1790. doi:10.1371/journal.pone.0001790 (2008)

  22. M.E. Halloran, I.M. Longini, D.M. Cowart, A Nizam, Vaccine 20, 3254 (2002)

    Article  Google Scholar 

  23. M.E. Halloran, I.M. Longini, A. Nizam, Y. Yang, Science 298, 1428 (2002)

    Article  ADS  Google Scholar 

  24. I.M. Longini, M.E. Halloran, A. Nizam, Y. Yang, Am. J. Epidemiol. 159, 623 (2004)

    Article  Google Scholar 

  25. I.M. Longini, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, M.E. Halloran, Science 309, 1083 (2005)

    Article  ADS  Google Scholar 

  26. N.M. Ferguson, D.A.T. Cummings, C. Fraser, J.C. Cajka, P.C. Cooley, D.S. Burke, Nature 442, 448 (2006)

    Article  ADS  Google Scholar 

  27. N.E. Basta, D.L. Chao, M.E. Halloran, L. Matrajt, I.M. Longini Jr., Am. J. Epidemiol. 15, 679 (2009)

    Article  Google Scholar 

  28. Y. Yang, J.D. Sugimoto, M.E. Halloran, N.E. Basta, D.L. Chao, L. Matrajt, G. Potter, E. Kenah, I.M. Longini Jr., Science 326, 729 (2009)

    Article  ADS  Google Scholar 

  29. F. Odaira, H. Takahashi, T. Toyokawa, Y. Tsuchihashi, T. Kodama, Y. Yahata, T. Sunagawa, K. Taniguchi, N. Okabe, Euro Surveill. 14, 19320 (2009)

    Google Scholar 

  30. A study of the model for different finite dimensions, $d$, of the lattice is in progress. We have performed simulations on regular lattices with $d=2$, 3, 4 and 6 (where each site has $2\cdot d$ nearest-neighbor sites). Preliminary results show that, fixed the total number of sites and the total number of individuals (occupied sites), it is possible to reproduce the maximum of the histogram shown in fig. fig1 with transmission probability, $P_a$, decreasing with increasing $d$. However we are not able to reproduce the overall histogram for each value of the dimension. In particular we find that the width of the simulated curve decreases increasing $d$, and the best agreement is found for $d=3$ and $d=4$. Instead, the width of the curve obtained with $d=2$ is larger than the experimental one, which corresponds to a diffusion of the epidemic slower than in the real case. For $d=6$, we find a curve with a smaller width, corresponding to a faster diffusion of the epidemic. This means that the population is well represented by individuals having a maximum of 6 or 8 simultaneous contacts, while a maximum of 4 (as in $2d$ lattice) or 12 (as in $6d$) are, respectively, unrealistic underestimate and overestimate of the contact number

  31. R. Pemantle, Ann. Probabil. 20, 2089 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. S.Y. Del Valle, J.M. Hyman, H.W. Hethcote, S.G. Eubank, Social Networks 29, 539 (2007)

    Article  Google Scholar 

  33. At high values of $\beta$ the stationary state is not homogeneous: a sort of phase separation occurs where individuals aggregate to form high-density clusters. In the present paper we are not interested in such a case then high values of $\beta$ are not considered at all.

  34. We start with 65 initial infected individuals distributed among the various age classes according to the age-distributed ILI cases registered by the Italian surveillance in the 43rd week, with a reduction factor of 0.015

  35. In our simulations the time unit is the Monte Carlo step, which corresponds to the interval when all particles have attempted to move on average one time. The collapse of the numerical data onto the experimental ones is obtained introducing an a priori arbitrary time scale, in particular we put one week equal to 250 Monte Carlo steps

  36. H. Khiabanian, M.G. Farrell, K.St. George, R. Rabadan, PLoS ONE 4 e6832. doi:10.1371/journal.pone.0006832 (2009)

  37. E. Miller, K. Hoschler, P. Hardelid, E. Stanford, N. Andrews, M. Zambon, Lancet 375, 1100 (2010)

    Article  Google Scholar 

  38. C. Fraser et al., Science 324, 1557 (2009)

    Article  ADS  Google Scholar 

  39. J. Wallinga, M. Lipsitch, Proc. R. Soc. B 274, 599 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fierro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fierro, A., Liccardo, A. A simple stochastic lattice gas model for H1N1 pandemic. Application to the Italian epidemiological data. Eur. Phys. J. E 34, 11 (2011). https://doi.org/10.1140/epje/i2011-11011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11011-2

Keywords

Navigation