Skip to main content
Log in

Atomistic modeling of thermal effects in focused electron beam-induced deposition of Me\(_2\)Au(tfac)

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The role of thermal effects in the focused electron beam-induced deposition (FEBID) of Me\(_2\)Au(tfac) is studied by means of irradiation-driven molecular dynamics simulations. The FEBID of Me\(_2\)Au(tfac), a commonly used precursor molecule for the fabrication of gold-containing nanostructures, is simulated at different temperatures in the range of \(300-450\) K. The deposit’s structure, morphology, growth rate, and elemental composition at different temperatures are analyzed. The fragmentation cross section for Me\(_2\)Au(tfac) is evaluated on the basis of the cross sections for structurally similar molecules. Different fragmentation channels involving the dissociative ionization (DI) and dissociative electron attachment (DEA) mechanisms are considered. The conducted simulations of FEBID confirm experimental observations that deposits consist of small gold clusters embedded into a carbon-rich organic matrix. The simulation results indicate that accounting for both DEA- and DI-induced fragmentation of all the covalent bonds in Me\(_2\)Au(tfac) and increasing the amount of energy transferred to the system upon fragmentation increase the concentration of gold in the deposit. The simulations predict an increase in Au:C ratio in the deposit from 0.18 to 0.32 upon the temperature increase from 300 to 450 K, being within the range of experimentally reported values.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request].

References

  1. I. Utke, S. Moshkalev, P. Russel, Nanofabrication using focused ion and electron beams (Oxford University Press, UK, 2012)

    Google Scholar 

  2. J.M. De Teresa, Nanofabrication: Nanolithography techniques and their applications (IOP Publishing Ltd, USA, 2020)

    Google Scholar 

  3. R. Winkler, J.D. Fowlkes, P.D. Rack, H. Plank, J. Appl. Phys. 125, 210901 (2019). https://doi.org/10.1063/1.5092372

    Article  ADS  Google Scholar 

  4. M. Huth, F. Porrati, S. Barth, J. Appl. Phys. 130, 170901 (2021). https://doi.org/10.1063/5.0064764

    Article  ADS  Google Scholar 

  5. H. Plank, R. Winkler, C.H. Schwalb, J. Hütner, J.D. Fowlkes, P.D. Rack, I. Utke, M. Huth, Micromachines 11, 48 (2020). https://doi.org/10.3390/mi11010048

    Article  Google Scholar 

  6. G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, Eur. Phys. J. D 70, 217 (2016). https://doi.org/10.1140/epjd/e2016-70283-5

    Article  ADS  Google Scholar 

  7. I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale modeling of complex molecular structure and dynamics with MBN Explorer (Springer International Publishing, Cham, Switzerland, 2017). https://doi.org/10.1007/978-3-319-56087-8

  8. P. de Vera, M. Azzolini, G. Sushko, I. Abril, R. Garcia-Molina, M. Dapor, I.A. Solov’yov, A.V. Solov’yov, Sci. Rep. 10, 20827 (2020). https://doi.org/10.1038/s41598-020-77120-z

    Article  Google Scholar 

  9. G.B. Sushko, I.A. Solov’yov, A.V. Verkhovtsev, S.N. Volkov, A.V. Solov’yov, Eur. Phys. J. D 70, 12 (2016). https://doi.org/10.1140/epjd/e2015-60424-9

    Article  ADS  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Quantum mechanics (Non-relativistic Theory) (Elsevier Butterworth-Heinemann, UK, 1977)

    MATH  Google Scholar 

  11. I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012). https://doi.org/10.1002/jcc.23086

    Article  Google Scholar 

  12. G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, J. Mol. Graph. Model. 88, 247 (2019). https://doi.org/10.1016/j.jmgm.2019.02.003

    Article  Google Scholar 

  13. A. Prosvetov, A.V. Verkhovtsev, G. Sushko, A.V. Solov’yov, Beilstein J. Nanotechnol. 12, 1151 (2021). https://doi.org/10.3762/bjnano.12.86

    Article  Google Scholar 

  14. A. Prosvetov, A.V. Verkhovtsev, G. Sushko, A.V. Solov’yov, Phys. Chem. Chem. Phys. 24, 10807 (2022). https://doi.org/10.1039/D2CP00809B

    Article  Google Scholar 

  15. J.J. Mulders, L.M. Belova, A. Riazanova, Nanotechnology 22, 055302 (2011). https://doi.org/10.1088/0957-4484/22/5/055302

    Article  ADS  Google Scholar 

  16. S.G. Rosenberg, K. Landheer, C.W. Hagen, D.H. Fairbrother, J. Vac. Sci. Technol. B 30, 051805 (2012). https://doi.org/10.1116/1.4751281

    Article  Google Scholar 

  17. J.M. De Teresa, P. Orús, R. Córdoba, P. Philipp, Micromachines 10, 799 (2019). https://doi.org/10.3390/mi10120799

    Article  Google Scholar 

  18. M. Huth, F. Porrati, P. Gruszka, S. Barth, Micromachines 11, 28 (2020). https://doi.org/10.3390/mi11010028

    Article  Google Scholar 

  19. M. Toth, C. Lobo, V. Friedli, A. Szkudlarek, I. Utke, Beilstein J. Nanotechnol. 6, 1518 (2015). https://doi.org/10.3762/bjnano.6.157

    Article  Google Scholar 

  20. I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008). https://doi.org/10.1116/1.2955728

    Article  Google Scholar 

  21. S. Barth, M. Huth, F. Jungwirth, J. Mater. Chem. C 8, 15884 (2020). https://doi.org/10.1039/D0TC03689G

    Article  Google Scholar 

  22. I. Utke, P. Swiderek, K. Höflich, K. Madajska, J. Jurczyk, P. Martinović, I.B. Szymańska, Coord. Chem. Rev. 458, 213851 (2022). https://doi.org/10.1016/j.ccr.2021.213851

    Article  Google Scholar 

  23. B. Ómarsson, S. Engmann, O. Ingólfsson, RSC Adv. 4, 33222 (2014). https://doi.org/10.1039/c4ra04451g

    Article  ADS  Google Scholar 

  24. J. Warneke, W.F. Van Dorp, P. Rudolf, M. Stano, P. Papp, Š Matejčík, T. Borrmann, P. Swiderek, Phys. Chem. Chem. Phys. 17, 1204 (2015). https://doi.org/10.1039/c4cp04239e

    Article  Google Scholar 

  25. J. Kopyra, F. Rabilloud, H. Abdoul-Carime, Phys. Chem. Chem. Phys. 20, 7746 (2018). https://doi.org/10.1039/c7cp08149a

    Article  Google Scholar 

  26. J. Kopyra, F. Rabilloud, and H. Abdoul-Carime, J. Phys. Chem. A 124, 2186 (2020). https://doi.org/10.1021/acs.jpca.9b10119

  27. J. Kopyra, F. Rabilloud, H. Abdoul-Carime, Inorg. Chem. 59, 12788 (2020). https://doi.org/10.1021/acs.inorgchem.0c01842

    Article  Google Scholar 

  28. J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. Van Dorp, T.E. Madey, C.W. Hagen, D.H. Fairbrother, J. Appl. Phys. 107, 054301 (2010). https://doi.org/10.1063/1.3295918

    Article  ADS  Google Scholar 

  29. S. Graells, R. Alcubilla, G. Badenes, R. Quidant, Appl. Phys. Lett. 91, 121112 (2007). https://doi.org/10.1063/1.2786600

    Article  ADS  Google Scholar 

  30. D. Kuhness, A. Gruber, R. Winkler, J. Sattelkow, H. Fitzek, I. Letofsky-Papst, G. Kothleitner, H. Plank, A.C.S. Appl, Mater. Interfaces 13, 1178 (2021). https://doi.org/10.1021/acsami.0c17030

    Article  Google Scholar 

  31. A. Botman, J.J.L. Mulders, C.V. Hagen, Nanotechnology 20, 372001 (2009). https://doi.org/10.1088/0957-4484/20/37/372001

    Article  Google Scholar 

  32. M.V. Puydinger dos Santos, A. Szkudlarek, A. Rydosz, C. Guerra-Nuñez, F. Béron, K.R. Pirota, S. Moshkalev, J.A. Diniz, I. Utke, Beilstein J. Nanotechnol. 9, 91 (2018). https://doi.org/10.3762/bjnano.9.11

    Article  Google Scholar 

  33. M.M. Shawrav, P. Taus, H.D. Wanzenboeck, M. Schinnerl, M. Stöger-Pollach, S. Schwarz, A. Steiger-Thirsfeld, E. Bertagnolli, Sci. Rep. 6, 34003 (2016). https://doi.org/10.1038/srep34003

    Article  ADS  Google Scholar 

  34. C. Mansilla, S. Mehendale, J.J. Mulders, P.H. Trompenaars, Nanotechnology 27, 415301 (2016). https://doi.org/10.1088/0957-4484/27/41/415301

    Article  Google Scholar 

  35. H.W.P. Koops, J. Vac. Sci. Technol. B 14, 4105 (1996). https://doi.org/10.1116/1.588600

    Article  Google Scholar 

  36. A. Botman, J.J.L. Mulders, R. Weemaes, S. Mentink, Nanotechnology 17, 3779 (2006). https://doi.org/10.1088/0957-4484/17/15/028

    Article  ADS  Google Scholar 

  37. P. de Vera, A. Verkhovtsev, G. Sushko, A.V. Solov’yov, Eur. Phys. J. D 73, 215 (2019). https://doi.org/10.1140/epjd/e2019-100232-9

    Article  ADS  Google Scholar 

  38. A.V. Verkhovtsev, I.A. Solov’yov, A.V. Solov’yov, Eur. Phys. J. D 75, 213 (2021). https://doi.org/10.1140/epjd/s10053-021-00223-3

    Article  ADS  Google Scholar 

  39. I.A. Solov’yov, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Dynamics of Systems on the Nanoscale (Springer International Publishing, Cham, Switzerland, 2022). https://doi.org/10.1007/978-3-030-99291-0

  40. M. J. Frisch et al., (2016) Gaussian 09, Revision E.01. Gaussian Inc., Wallingford, CT

  41. E. Pohjolainen, X. Chen, S. Malola, G. Groenhof, H. Häkkinen, J. Chem. Theory Comput. 12, 1342 (2016). https://doi.org/10.1021/acs.jctc.5b01053

    Article  Google Scholar 

  42. V. Zoete, M.A. Cuendet, A. Grosdidier, O. Michielin, J. Comput. Chem. 32, 2359 (2011). https://doi.org/10.1002/jcc.21816

    Article  Google Scholar 

  43. S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990). https://doi.org/10.1021/j100389a010

    Article  Google Scholar 

  44. R. Gupta, Phys. Rev. B 23, 6265 (1983). https://doi.org/10.1103/PhysRevB.23.6265

    Article  ADS  Google Scholar 

  45. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993). https://doi.org/10.1103/PhysRevB.48.22

    Article  ADS  Google Scholar 

  46. L. Landau, E. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 1980), pp.111–157. https://doi.org/10.1016/B978-0-08-057046-4.50011-7

    Book  Google Scholar 

  47. I. Mills, T. Cvitas, K. Homann, N. Kallay, K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry (Wiley-Blackwell, New York, 1993). https://doi.org/10.1016/B978-0-08-057046-4.50011-7

    Book  Google Scholar 

  48. K.A. Fichthorn, R.A. Miron, Phys. Rev. Lett. 89, 196103 (2002). https://doi.org/10.1103/PhysRevLett.89.196103

  49. J. Cullen, A. Bahm, C.J. Lobo, M.J. Ford, M. Toth, J. Phys. Chem. C 119, 15948 (2015). https://doi.org/10.1021/acs.jpcc.5b00918

  50. T. Ohta, F. Cicoira, P. Doppelt, L. Beitone, P. Hoffmann, Chem. Vap. Depos. 7, 33 (2001). https://doi.org/10.1002/1521-3862(200101)7:1<33::AID-CVDE33>3.0.CO;2-Y

    Article  Google Scholar 

  51. K. Wnorowski, M. Stano, W. Barszczewska, A. Jówko, S. Matejčík, Int. J. Mass Spectrom. 314, 42 (2012). https://doi.org/10.1016/j.ijms.2012.02.002

    Article  Google Scholar 

  52. S. Engmann, M. Stano, P. Papp, M.J. Brunger, S.Š Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013). https://doi.org/10.1063/1.4776756

  53. R.M. Thorman, T.P. Ragesh Kumar, D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015). https://doi.org/10.3762/bjnano.6.194

    Article  Google Scholar 

  54. H. Deutsch, T. Märk, V. Tarnovsky, K. Becker, C. Cornelissen, L. Cespiva, V. Bonacic-Koutecky, Int. J. Mass Spectrom. Ion Proc. 137, 77 (1994). https://doi.org/10.1016/0168-1176(94)04053-2

    Article  ADS  Google Scholar 

  55. D. Gupta, B. Antony, J. Chem. Phys. 141, 054303 (2014). https://doi.org/10.1063/1.4891472

    Article  ADS  Google Scholar 

  56. J.N. Bull, P.W. Harland, C. Vallance, J. Phys. Chem. A 116, 767 (2012). https://doi.org/10.1021/jp210294p

    Article  Google Scholar 

  57. V.S. Prabhudesai, V. Tadsare, S. Ghosh, K. Gope, D. Davis, E. Krishnakumar, J. Chem. Phys. 141, 164320 (2014). https://doi.org/10.1063/1.4898144

    Article  ADS  Google Scholar 

  58. A.N. Nelson, Electron impact ionization cross sections of gold, chromium and iron (Massachusetts Inst. of Tech, Report, 1976)

  59. W. Hwang, Y.K. Kim, M.E. Rudd, J. Chem. Phys. 104, 2956 (1996). https://doi.org/10.1063/1.471116

    Article  ADS  Google Scholar 

  60. M. Bart, P.W. Harland, J.E. Hudson, C. Vallance, Phys. Chem. Chem. Phys. 3, 800 (2001). https://doi.org/10.1039/B009243F

    Article  Google Scholar 

  61. J.R. Vacher, F. Jorand, N. Blin-Simiand, S. Pasquiers, Int. J. Mass Spectrom. 273, 117 (2008). https://doi.org/10.1016/j.ijms.2008.03.011

    Article  Google Scholar 

  62. I.A. Solov’yov, G. Sushko, A.V. Solov’yov, MBN Explorer Users’ Guide. Version 3.0 (MesoBioNano Science Publishing, Frankfurt a. M, 2017)

    Google Scholar 

  63. A.V. Riazanova, Y.G.M. Rikers, J.J.L. Mulders, L.M. Belova, Langmuir 28, 6185 (2012). https://doi.org/10.1021/la203599c

    Article  Google Scholar 

  64. J. J. L. Mulders and A. Botman (2011) Proc. 2010 Beilstein Inst. Nanosci. Symp. , 179 (2011)

Download references

Acknowledgements

The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft (Project no. 415716638), and the European Union’s Horizon 2020 research and innovation programme-the RADON project (GA 872494) within the H2020-MSCA-RISE-2019 call. This article is also based upon work from the COST Action CA20129 MultIChem, supported by COST (European Cooperation in Science and Technology). The possibility of performing computer simulations at the Goethe-HLR cluster of the Frankfurt Center for Scientific Computing is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology were performed by AVS, AVV, AP; investigation, data curation, formal analysis by AP, AVV; software by GS; writing—original draft—by AP, AVV; writing—review & editing—by AVS, AVV, AP; supervision by AVS.

Corresponding author

Correspondence to Alexey Prosvetov.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosvetov, A., Verkhovtsev, A.V., Sushko, G. et al. Atomistic modeling of thermal effects in focused electron beam-induced deposition of Me\(_2\)Au(tfac). Eur. Phys. J. D 77, 15 (2023). https://doi.org/10.1140/epjd/s10053-023-00598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00598-5

Navigation