Skip to main content
Log in

Design and development of dielectric barrier discharge setup to form plasma-activated water and optimization of process parameters

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present work, a co-axial cylindrical plasma device has been designed and developed to generate dielectric barrier discharge to form plasma-activated water (PAW). The voltage–discharge current characteristics and optical emission spectroscopy are performed to characterize the plasma and identify the formed plasma species. The impact of process parameters on physicochemical properties of PAW and on the concentration of reactive oxygen–nitrogen species is studied using a design of experiment methodology. The obtained results are analyzed using analysis of variance, effect estimation, marginal means, and regression analysis. The optimum values of process parameters to form PAW are determined using MATLAB fmincon function. The obtained results show that plasma–water exposure time and plasma discharge power significantly influence the physicochemical properties of PAW and the concentration of NO3‾ and NO2‾ ions in plasma-activated water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. V. Rathore, B.S. Tiwari, S.K. Nema, Plasma Chem. Plasma Process. 42, 109 (2022)

    Article  Google Scholar 

  2. S.A. Sajib, M. Billah, S. Mahmud, M. Miah, F. Hossain, F.B. Omar, N.C. Roy, K.M.F. Hoque, M.R. Talukder, A.H. Kabir, Plasma Chem. Plasma Process. 40(1), 119 (2020)

    Article  Google Scholar 

  3. S. Wu, B. Thapa, C. Rivera, Y. Yuan, J. Environ. Chem. Eng. 9(2), 104761 (2021)

    Article  Google Scholar 

  4. P.G. Subramanian, A. Jain, A.M. Shivapuji, N.R. Sundaresan, S. Dasappa, L. Rao, Plasma Process. Polym. 17(8), 1900260 (2020)

    Article  Google Scholar 

  5. S. Wang, D. Xu, M. Qi, B. Li, S. Peng, Q. Li, H. Zhang, D. Liu, Biophysica 1(3), 297 (2021)

    Article  Google Scholar 

  6. X. Liao, Y. Su, D. Liu, S. Chen, Y. Hu, X. Ye, J. Wang, T. Ding, Food Control 94, 307 (2018)

    Article  Google Scholar 

  7. V. Rathore, D. Patel, S. Butani, S.K. Nema, Plasma Chem. Plasma Process. 41(3), 871 (2021)

    Article  Google Scholar 

  8. Z. Hongzhuan, T. Ying, S. Xia, G. Jinsong, Z. Zhenhua, J. Beiyu, C. Yanyan, L. Lulu, Z. Jue, Y. Bing, Appl. Microbiol. Biotechnol. 104(1), 107 (2020)

    Article  Google Scholar 

  9. L. Ten Bosch, R. Köhler, R. Ortmann, S. Wieneke, W. Viöl, Int. J. Environ. Res. Public Health 14(12), 1460 (2017)

    Article  Google Scholar 

  10. V. Rathore, D. Patel, N. Shah, S. Butani, H. Pansuriya, S.K. Nema, Plasma Chem. Plasma Process. 41, 1397 (2021)

    Article  Google Scholar 

  11. V. Rathore, S.K. Nema, J. Appl. Phys. 129(8), 084901 (2021)

    Article  ADS  Google Scholar 

  12. V. Rathore, S.K. Nema, Phys. Plasmas 29(3), 033510 (2022)

    Article  ADS  Google Scholar 

  13. L. Sivachandiran, A. Khacef, RSC Adv. 7(4), 1822 (2017)

    Article  ADS  Google Scholar 

  14. Y.S. Jin, C. Cho, D. Kim, C.H. Sohn, C.-S. Ha, S.-T. Han, Jpn. J. Appl. Phys. 59(SH), SHHF05 (2020)

    Article  Google Scholar 

  15. P. Lukes, E. Dolezalova, I. Sisrova, M. Clupek, Plasma Sources Sci. Technol. 23(1), 015019 (2014)

    Article  ADS  Google Scholar 

  16. P. Lu, D. Boehm, P. Bourke, P.J. Cullen, Plasma Process. Polym. 14(8), 1600207 (2017)

    Article  Google Scholar 

  17. M. Kettlitz, O. van Rooij, H. Höft, R. Brandenburg, A. Sobota, J. Appl. Phys. 128(23), 233302 (2020)

    Article  ADS  Google Scholar 

  18. Z. Fang, X. Xie, J. Li, H. Yang, Y. Qiu, E. Kuffel, J. Phys. D Appl. Phys. 42(8), 085204 (2009)

    Article  ADS  Google Scholar 

  19. H. Sahai, M.M. Ojeda, Analysis of Variance for Random Models, Volume 2: Unbalanced Data: Theory, Methods, Applications, and Data Analysis (Springer, Berlin, 2004)

    MATH  Google Scholar 

  20. J. Cohen, Statistical Power Analysis for the Behavioral Sciences (Routledge, England, 2013)

    Book  Google Scholar 

  21. D. Shemansky, A. Broadfoot, J. Quant. Spectrosc. Radiat. Transf. 11(10), 1385 (1971)

    Article  ADS  Google Scholar 

  22. G. C. Chen, L. M. He, B. B. Zhao, H. L. Zhang, Z. C. Zhao, H. Zeng, J. P. Lei, and X. Liu, J. Spectrosc. 2019 (2019).

  23. Z. Navrátil, Disertacnı práce, Masarykova univerzita v Brne 60 (2006).

  24. O. Aoun, S. Benamara, L. Aberkane, N. Amrani, F. Dahmoune, K. Madani, Anal. Methods 5(20), 5830 (2013)

    Article  Google Scholar 

  25. B. Myers, P. Ranieri, T. Smirnova, P. Hewitt, D. Peterson, M.H. Quesada, E. Lenker, K. Stapelmann, J. Phys. D Appl. Phys. 54(14), 145202 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Atomic Energy (Government of India) graduate fellowship scheme (DGFS). Authors are sincerely thankful to Mr. Nimish Sanchiyat for his support and co-operation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and in design aspects. Design and development of plasma-activated water setup were performed by VR, CP, and AS. Material preparation, data collection, and analysis were performed by VR. The first draft of the manuscript was written by VR, and all authors commented on intial versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vikas Rathore.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, V., Patil, C., Sanghariyat, A. et al. Design and development of dielectric barrier discharge setup to form plasma-activated water and optimization of process parameters. Eur. Phys. J. D 76, 77 (2022). https://doi.org/10.1140/epjd/s10053-022-00397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00397-4

Navigation