Skip to main content
Log in

Anti-de Sitter/boundary conformal field theory correspondence in the non-relativistic limit

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Boundary conformal field theory (BCFT) is the study of conformal field theory (CFT) in semi-infinite space-time. In the non-relativistic limit (xϵx,tt,ϵ→0), the boundary conformal algebra changes to boundary Galilean conformal algebra (BGCA). In this work, some aspects of AdS/BCFT in the non-relativistic limit were explored. We constrain correlation functions of Galilean conformal invariant fields with BGCA generators. For a situation with a boundary condition at surface x=0 (\(z=\overline{z}\)), our result agrees with the non-relativistic limit of the BCFT two-point function. We also introduce the holographic dual of boundary Galilean conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Phys. Lett. A 357, 1 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J. Gomis, J. Gomis, K. Kamimura, J. High Energy Phys. 0512, 024 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. D.T. Son, Phys. Rev. D 78, 046003 (2008). arXiv:0804.3972 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  4. K. Balasubramanian, J. McGreevy, Phys. Rev. Lett. 101, 061601 (2008). arXiv:0804.4053 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  5. W.D. Goldberger, arXiv:0806.2867 [hep-th]

  6. J.L.B. Barbon, C.A. Fuertes, J. High Energy Phys. 0809, 030 (2008). arXiv:0806.3244 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  7. C.P. Herzog, M. Rangamani, S.F. Ross, arXiv:0807.1099 [hep-th]

  8. A. Adams, K. Balasubramanian, J. McGreevy, arXiv:0807.1111 [hep-th]

  9. A. Bagchi, R. Gopakumar, J. High Energy Phys. 0907, 037 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Duval, P.A. Horvathy, J. Phys. A42, 465206 (2009)

    MathSciNet  ADS  Google Scholar 

  11. D.T. Son, Phys. Rev. D 78, 046003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. K. Balasubramanian, J. McGreevy, Phys. Rev. Lett. 101, 061601 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Alishahiha, A. Davody, A. Vahedi, J. High Energy Phys. 0908, 022 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Bagchi, A. Kundu, arXiv:1011.4999 [hep-th] (2010)

  15. M. Henkel, J. Stat. Phys. 75, 1023–1061 (1994)

    Article  ADS  MATH  Google Scholar 

  16. K. Binder, P.C. Hohenberg, Phys. Rev. B 6, 3461 (1972)

    Article  ADS  Google Scholar 

  17. T.C. Lubensky, M.H. Rubin, Phys. Rev. Lett. 31, 1469 (1973)

    Article  ADS  Google Scholar 

  18. T.C. Lubensky, M.H. Rubin, Phys. Rev. B 11, 4533 (1975)

    Article  ADS  Google Scholar 

  19. R. Lipowsky, Phys. Rev. Lett. 49, 1575 (1982)

    Article  ADS  Google Scholar 

  20. H.W. Diehl, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J.L. Lebowitz, vol. 10 (Academic Press, London, 1986)

    Google Scholar 

  21. K. Binder, in Phase Transitions and Critical Phenomena,, ed. by C. Domb, J.L. Lebowitz, vol. 8 (Academic Press, London, 1983)

    Google Scholar 

  22. H.K. Janssen, B. Schaub, B. Schmittmann, Z. Phys. B 73, 539 (1989)

    Article  ADS  Google Scholar 

  23. T. Takayanagi, Phys. Rev. Lett. 107, 101602 (2011)

    Article  ADS  Google Scholar 

  24. M. Fujita, T. Takayanagi, E. Tonni, arXiv:1108.5152 [hep-th]

  25. J.L. Cardy, Nucl. Phys. B 240, 514 (1984). arXiv:hep-th/0411189

    Article  ADS  Google Scholar 

  26. D.M. McAvity, H. Osborn, Nucl. Phys. B 455, 522 (1995). arXiv:cond-mat/9505127

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. Alishahiha, R. Fareghbal, arXiv:1108.5607 [hep-th]

  28. M.R. Setare, V. Kamali, arXiv:1109.3849 [hep-th]

  29. A. Bagchi, R. Gopakumar, I. Mandal, A. Miwa, GCA in 2d. J. High Energy Phys. 1008, 004 (2010). arXiv:0912.1090

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Bagchi, I. Mandal, Phys. Lett. B 675, 393–397 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Bagchi, arXiv:1012.3316 (2010)

  32. M.R. Setare, V. Kamali, arXiv:1010.0329 [hep-th] (2010)

  33. E. Kamke, Differentialgleichungen Lösungsmethoden und Lösungen, vol. 2, 4th edn. (Akademische Verlagsgesellschaft, Leipzig, 1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Setare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setare, M.R., Kamali, V. Anti-de Sitter/boundary conformal field theory correspondence in the non-relativistic limit. Eur. Phys. J. C 72, 2115 (2012). https://doi.org/10.1140/epjc/s10052-012-2115-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2115-x

Keywords

Navigation