Skip to main content
Log in

The liquid-lithium target at the soreq applied research accelerator facility

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Franz Käppeler and collaborators showed in the 1980’s that the \(^7\)Li(pn)\(^7\)Be reaction can be used to produce a flux of neutrons having a stellar-like energy distribution, closely similar to that contributing to the slow (s) neutron capture process in massive stars. The Liquid-Lithium Target (LiLiT) at Phase I of the Soreq Applied Research Accelerator Facility (SARAF) was designed following the same physical principle. Owing to the high proton beam intensity of SARAF and the power dissipation of LiLiT, the facility provided a neutron intensity more than one order of magnitude higher than available with conventional solid Li targets. We review here our first collaboration with Franz Käppeler and his group, the LiLiT design and nuclear astrophysics research accomplished in recent years at the SARAF-LiLiT facility. An outlook to the research program with SARAF Phase II, currently in construction, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available upon request from the authors.]

References

  1. W. Ratynski, F. Käppeler, Neutron capture cross section of \(^{197}\rm Au \): A standard for stellar nucleosynthesis. Phys. Rev. C 37, 595–604 (1988). https://doi.org/10.1103/PhysRevC.37.595

    Article  Google Scholar 

  2. M. Paul, M. Tessler, M. Friedman, S. Halfon, T. Palchan, L. Weissman, A. Arenshtam, D. Berkovits, Y. Eisen, I. Eliahu, G. Feinberg, D. Kijel, A. Kreisel, I. Mardor, G. Shimel, A. Shor, I. Silverman, Reactions along the astrophysical s-process path and prospects for neutron radiotherapy with the liquid-lithium target (LiLiT) at the soreq applied research accelerator facility (SARAF). Eur. Phys. J. A 55, 44 (2019). https://doi.org/10.1140/epja/i2019-12723-5

    Article  Google Scholar 

  3. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, The s-process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83(1), 157–193 (2011). https://doi.org/10.1103/RevModPhys.83.157

    Article  Google Scholar 

  4. I. Mardor, O. Aviv, M. Avrigeanu, D. Berkovits, A. Dahan, T. Dickel, I. Eliyahu, M. Gai, I. Gavish-Segev, S. Halfon, M. Hass, T. Hirsh, B. Kaiser, D. Kijel, A. Kreisel, Y. Mishnayot, I. Mukul, B. Ohayon, M. Paul, A. Perry, H. Rahangdale, J. Rodnizki, G. Ron, R. Sasson-Zukran, A. Shor, I. Silverman, M. Tessler, S. Vaintraub, L. Weissman, The Soreq applied research accelerator facility (SARAF): overview, research programs and future plans. Eur. Phys. J. A 54(5), 91 (2018). https://doi.org/10.1140/epja/i2018-12526-2

  5. H. Nassar, M. Paul, I. Ahmad, D. Berkovits, M. Bettan, P. Collon, S. Dababneh, S. Ghelberg, J.P. Greene, A. Heger, M. Heil, D.J. Henderson, C.L. Jiang, F. Käppeler, H. Koivisto, S. O’Brien, R.C. Pardo, N. Patronis, T. Pennington, R. Plag, K.E. Rehm, R. Reifarth, R. Scott, S. Sinha, X. Tang, R. Vondrasek, Stellar \((n,\gamma )\) cross section of \(^{62}{\rm N}{\rm i}\). Phys. Rev. Lett. 94, 092504 (2005). https://doi.org/10.1103/PhysRevLett.94.092504

    Article  Google Scholar 

  6. S. Kubono, T. Teranishi, T. Kajino, K. Nomoto, I. Tanihata (eds.). Nuclei in the cosmos. In Proceedings, 7th International Symposium, NIC7, Fuji-Yoshida, Japan, July 8–12, 2002, vol. 718 (2003)

  7. T. Rauscher, A. Heger, R.D. Hoffman, S.E. Woosley, Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323 (2002). https://doi.org/10.1086/341728

    Article  Google Scholar 

  8. W. Kutschera, Accelerator mass spectrometry: state of the art and perspectives. Adv. Phys. X 1(4), 570–595 (2016). https://doi.org/10.1080/23746149.2016.1224603

    Article  Google Scholar 

  9. H.A. Synal, Accelerator mass spectrometry: ultra-sensitive detection technique of long-lived radionuclides. CHIMIA 76, 45 (2022). https://doi.org/10.2533/chimia.2022.45

    Article  Google Scholar 

  10. M. Paul, C. Feldstein, I. Ahmad, D. Berkovits, C. Bordeanu, J. Caggiano, S. Ghelberg, J. Goerres, J. Greene, M. Hass, A. Heinz, D. Henderson, S. Hui, R. Janssens, C. Jiang, S. Jiang, Y. Nirel, R. Pardo, T. Pennington, K. Rehm, G. Savard, G. Verri, R. Vondrasek, I. Wiedenhover, M. Wiescher, Counting 44Ti nuclei from the \(^{40}\)Ca(\({\alpha ,\gamma }\))\(^{44}\)Ti reaction. Nucl. Phys. A 718, 239–242 (2003). https://doi.org/10.1016/S0375-9474(03)00720-6. www.sciencedirect.com/science/article/pii/S0375947403007206

  11. A. Wallner, Nuclear astrophysics and ams—probing nucleosynthesis in the lab. Nucl. Inst. Methods Phys. Res. B 268(7–8), 1277–1282 (2010). https://doi.org/10.1016/j.nimb.2009.10.152

    Article  Google Scholar 

  12. E. Chávez, V. Araujo-Escalona, J. Mas-Ruiz, L. Acosta, E. Andrade, L. Barrón-Palos, R. Gleason, A. Huerta, M. Rodríguez-Ceja, D. Marín-Límbarri, C. Méndez, S. Padilla, C. Solís, A. Valdez-Guerrero, Accelerator mass spectrometry, an ultrasensitive tool to measure cross sections for stellar nucleosynthesis. Nucl. Instrum. Meth. Phys. Res. Sec. B: Beam Interact. Mater. Atoms 526, 77–82 (2022). https://doi.org/10.1016/j.nimb.2022.06.016. https://www.sciencedirect.com/science/article/pii/S0168583X22001689

  13. M. Paul, B.G. Glagola, W. Henning, J.G. Keller, W. Kutschera, Z. Liu, K.E. Rehm, B. Schneck, R.H. Siemssen, Heavy ion separation with a gas-filled magnetic spectrograph. Nucl. Instrum. Methods Phys. Res. A 277(2), 418–430 (1989) https://doi.org/10.1016/0168-9002(89)90771-7. www.sciencedirect.com/science/article/pii/0168900289907717

  14. H. Nassar, S. Ghelberg, M. Paul, S. Dababneh, M. Heil, F. Kaeppeler, R. Plag, I. Ahmad, J. Greene, D. Henderson, C. Jiang, R. Pardo, T. Pennington, K. Rehm, R. Scott, S. Sinh, X. Tang, R. Vondrasek, H. Koivisto, D. Berkovits, M. Bettan, R. Reifarth, S.O.P. Collon, N. Patronis, Production and isobaric separation of \(^{63}\)Ni ions for determination of the \(^{62}\)Ni\((n,\gamma )^{63}\)Ni reaction cross section at stellar temperatures. Nucl. Phys. A 746, 613c–616c (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.140

    Article  Google Scholar 

  15. A.M. Alpizar-Vicente, T.A. Bredeweg, E.I. Esch, U. Greife, R.C. Haight, R. Hatarik, J.M. O’Donnell, R. Reifarth, R.S. Rundberg, J.L. Ullmann, D.J. Vieira, J.M. Wouters, Neutron capture cross section of \(^{62}\rm Ni \) at \(s\)-process energies. Phys. Rev. C 77, 015806 (2008). https://doi.org/10.1103/PhysRevC.77.015806

    Article  Google Scholar 

  16. I. Dillmann, T. Faestermann, G. Korschinek, J. Lachner, M. Maiti, M. Poutivtsev, G. Rugel, S. Walter, F. Käppeler, M. Erhard, A. Junghans, C. Nair, R. Schwengner, A. Wagner, Solving the stellar 62ni problem with ams. Nucl. Instrum. Meth. Phys. Res. Sec. B 268(7), 1283–1286 (2010). https://doi.org/10.1016/j.nimb.2009.10.153. http://www.sciencedirect.com/science/article/pii/S0168583X09012026. Proceedings of the Eleventh International Conference on Accelerator Mass Spectrometry

  17. Z. Bao, H. Beer, F. Kappeler, F. Voss, K. Wisshak, T. Rauscher, Neutron cross sections for nucleosynthesis studies. At. Data Nucl. Data Tables 76(1), 70–154 (2000). https://doi.org/10.1006/adnd.2000.0838. www.sciencedirect.com/science/article/pii/S0092640X00908386

  18. S. Halfon, A. Arenshtam, D. Kijel, M. Paul, D. Berkovits, I. Eliyahu, G. Feinberg, M. Friedman, N. Hazenshprung, I. Mardor, A. Nagler, G. Shimel, M. Tessler, I. Silverman, High-power liquid-lithium jet target for neutron production. Rev. Sci. Instrum. 84(12), 123507 (2013). https://doi.org/10.1063/1.4847158

    Article  Google Scholar 

  19. S. Halfon, A. Arenshtam, D. Kijel, M. Paul, L. Weissman, O. Aviv, D. Berkovits, O. Dudovitch, Y. Eisen, I. Eliyahu, G. Feinberg, G. Haquin, N. Hazenshprung, A. Kreisel, I. Mardor, G. Shimel, A. Shor, I. Silverman, M. Tessler, Z. Yungrais, Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target. Rev. Sci. Instrum. 85(5), 056105 (2014). https://doi.org/10.1063/1.4878627

    Article  Google Scholar 

  20. A. Kreisel, L. Weissman, A. Arenshtam, Y.B. Aliz, D. Berkovits, Y. Buzaglo, O. Dudovich, Y. Eisen, I. Eliyahu, G. Feinberg, I. Fishman, I. Gertz, A. Grin, S. Halfon, Y. Haruvy, T. Hirsh, D. Hirschmann, Z. Horvitz, B. Kaizer, D. Kijel, Y. Luner, I. Mor, J. Rodnizki, G. Shimel, A. Shor, I. Silverman, D. Vartsky, E. Zemach, in proceedings of linac 2014 (Geneva, Switzerland, 2014), 770, p. WEIOB02. http://accelconf.web.cern.ch/AccelConf/LINAC2014/papers/weiob02.pdf

  21. L. Weissman, D. Berkovits, A. Arenshtam, Y. Ben-Aliz, Y. Buzaglo, O. Dudovitch, Y. Eisen, I. Eliyahu, G. Feinberg, I. Fishman, I. Gertz, A. Grin, S. Halfon, D. Har-Even, Y. Haruvy, D. Hirschmann, T. Hirsh, Z. Horovitz, B. Kaizer, D. Kijel, A. Kreisel, Y. Luner, I. Mor, M. Paul, A. Perry, J. Rodnizki, G. Shimel, A. Shor, I. Silverman, M. Tessler, S. Vaintraub, SARAF Phase I linac operation in 2013-2014. J. Instrum. 10(10), T10004 (2015). http://stacks.iop.org/1748-0221/10/i=10/a=T10004

  22. G. Feinberg, Study of the \(^7\)Li(p,n) reaction towards measurements of neutron-capture cross sections in the astrophysical s-process with the saraf accelerator and a liquid-lithium target. Ph.D. thesis, The Hebrew University of Jerusalem (2014). http://arad.mscc.huji.ac.il/dissertations/W/JSL/001975970.pdf

  23. M. Tessler, M. Paul, A. Arenshtam, G. Feinberg, M. Friedman, S. Halfon, D. Kijel, L. Weissman, O. Aviv, D. Berkovits, Y. Eisen, I. Eliyahu, G. Haquin, A. Kreisel, I. Mardor, G. Shimel, A. Shor, I. Silverman, Z. Yungrais, Stellar 30-kev neutron capture in \(^{94,96}\)Zr and the \(^{90}\)Zr\((\gamma , n)^{89}\)Zr photonuclear reaction with a high-power liquid-lithium target. Phys. Lett. B 751, 418–422 (2015). https://doi.org/10.1016/j.physletb.2015.10.058. www.sciencedirect.com/science/article/pii/S0370269315008175

  24. C. Massimi, C. Domingo-Pardo, G. Vannini, L. Audouin, C. Guerrero, U. Abbondanno, G. Aerts, H. Álvarez, F. Álvarez-Velarde, S. Andriamonje, J. Andrzejewski, P. Assimakopoulos, G. Badurek, P. Baumann, F. Be čvář, F. Belloni, E. Berthoumieux, F. Calviño, M. Calviani, D. Cano-Ott, R. Capote, C. Carrapiço, P. Cennini, V. Chepel, E. Chiaveri, N. Colonna, G. Cortes, A. Couture, J. Cox, M. Dahlfors, S. David, I. Dillmann, W. Dridi, I. Duran, C. Eleftheriadis, L. Ferrant, A. Ferrari, R. Ferreira-Marques, K. Fujii, W. Furman, S. Galanopoulos, I.F. Gonçalves, E. González-Romero, F. Gramegna, F. Gunsing, B. Haas, R. Haight, M. Heil, A. Herrera-Martinez, M. Igashira, E. Jericha, F. Käppeler, Y. Kadi, D. Karadimos, D. Karamanis, M. Kerveno, P. Koehler, E. Kossionides, M. Krtička, C. Lampoudis, C. Lederer, H. Leeb, A. Lindote, I. Lopes, M. Lozano, S. Lukic, J. Marganiec, S. Marrone, T. Martinez, P. Mastinu, E. Mendoza, A. Mengoni, P.M. Milazzo, C. Moreau, M. Mosconi, F. Neves, H. Oberhummer, S. O’Brien, J. Pancin, C. Papadopoulos, C. Paradela, A. Pavlik, P. Pavlopoulos, G. Perdikakis, L. Perrot, M.T. Pigni, R. Plag, A. Plompen, A. Plukis, A. Poch, J. Praena, C. Pretel, J. Quesada, T. Rauscher, R. Reifarth, M. Rosetti, C. Rubbia, G. Rudolf, P. Rullhusen, L. Sarchiapone, R. Sarmento, I. Savvidis, C. Stephan, G. Tagliente, J.L. Tain, L. Tassan-Got, L. Tavora, R. Terlizzi, P. Vaz, A. Ventura, D. Villamarin, V. Vlachoudis, R. Vlastou, F. Voss, S. Walter, M. Wiescher, K. Wisshak, \(^{197}{\rm Au}\)(\(n,\gamma \)) cross section in the resonance region. Phys. Rev. C 81, 044616 (2010). https://doi.org/10.1103/PhysRevC.81.044616

  25. C. Lederer, N. Colonna, C. Domingo-Pardo, F. Gunsing, F. Käppeler, C. Massimi, A. Mengoni, A. Wallner, U. Abbondanno, G. Aerts, H. Álvarez, F. Álvarez-Velarde, S. Andriamonje, J. Andrzejewski, P. Assimakopoulos, L. Audouin, G. Badurek, M. Barbagallo, P. Baumann, F. Bečvář, F. Belloni, E. Berthoumieux, M. Calviani, F. Calviño, D. Cano-Ott, R. Capote, C. Carrapiço, A. Carrillo de Albornoz, P. Cennini, V. Chepel, E. Chiaveri, G. Cortes, A. Couture, J. Cox, M. Dahlfors, S. David, I. Dillmann, R. Dolfini, W. Dridi, I. Duran, C. Eleftheriadis, M. Embid-Segura, L. Ferrant, A. Ferrari, R. Ferreira-Marques, L. Fitzpatrick, H. Frais-Koelbl, K. Fujii, W. Furman, I. Goncalves, E. González-Romero, A. Goverdovski, F. Gramegna, E. Griesmayer, C. Guerrero, B. Haas, R. Haight, M. Heil, A. Herrera-Martinez, M. Igashira, S. Isaev, E. Jericha, Y. Kadi, D. Karadimos, D. Karamanis, M. Kerveno, V. Ketlerov, P. Koehler, V. Konovalov, E. Kossionides, M. Krtička, C. Lampoudis, H. Leeb, A. Lindote, I. Lopes, R. Losito, M. Lozano, S. Lukic, J. Marganiec, L. Marques, S. Marrone, T. Martinez, P. Mastinu, E. Mendoza, P.M. Milazzo, C. Moreau, M. Mosconi, F. Neves, H. Oberhummer, S. O’Brien, M. Oshima, J. Pancin, C. Papachristodoulou, C. Papadopoulos, C. Paradela, N. Patronis, A. Pavlik, P. Pavlopoulos, L. Perrot, M.T. Pigni, R. Plag, A. Plompen, A. Plukis, A. Poch, J. Praena, C. Pretel, J. Quesada, T. Rauscher, R. Reifarth, M. Rosetti, C. Rubbia, G. Rudolf, P. Rullhusen, J. Salgado, C. Santos, L. Sarchiapone, R. Sarmento, I. Savvidis, C. Stephan, G. Tagliente, J.L. Tain, D. Tarrio, L. Tassan-Got, L. Tavora, R. Terlizzi, G. Vannini, P. Vaz, A. Ventura, D. Villamarin, V. Vlachoudis, R. Vlastou, F. Voss, S. Walter, H. Wendler, M. Wiescher, K. Wisshak, \(^{197}\)au\((n,\gamma )\) cross section in the unresolved resonance region. Phys. Rev. C 83(3), 034608 (2011). https://doi.org/10.1103/PhysRevC.83.034608

    Article  Google Scholar 

  26. C. Massimi, B. Becker, E. Dupont, S. Kopecky, C. Lampoudis, R. Massarczyk, M. Moxon, V. Pronyaev, P. Schillebeeckx, I. Sirakov, R. Wynants, Neutron capture cross section measurements for \(^{197}\)Au from 3.5 to 84 keV at GELINA. Eur. Phys. J. A 50(8), 124 (2014). https://doi.org/10.1140/epja/i2014-14124-8

    Article  Google Scholar 

  27. M. Tessler, J. Zappala, S. Cristallo, L. Roberti, M. Paul, S. Halfon, T. Heftrich, W. Jiang, D. Kijel, A. Kreisel, M. Limongi, Z.T. Lu, P. Müller, R. Purtschert, R. Reifarth, A. Shor, D. Veltum, D. Vescovi, M. Weigand, L. Weissman, Stellar \(s\)-process neutron capture cross sections on \(^{78,80,84,86}{\rm Kr}\) determined via activation, atom trap trace analysis, and decay counting. Phys. Rev. C 104, 015806 (2021). https://doi.org/10.1103/PhysRevC.104.015806

    Article  Google Scholar 

  28. M. Tessler, M. Paul, S. Halfon, B.S. Meyer, R. Pardo, R. Purtschert, K.E. Rehm, R. Scott, M. Weigand, L. Weissman, S. Almaraz-Calderon, M.L. Avila, D. Baggenstos, P. Collon, N. Hazenshprung, Y. Kashiv, D. Kijel, A. Kreisel, R. Reifarth, D. Santiago-Gonzalez, A. Shor, I. Silverman, R. Talwar, D. Veltum, R. Vondrasek, Stellar \(^{36,38}{\rm Ar} (n,\gamma )^{37,39}{\rm Ar}\) reactions and their effect on light neutron-rich nuclide synthesis. Phys. Rev. Lett. 121, 112701 (2018). https://doi.org/10.1103/PhysRevLett.121.112701

    Article  Google Scholar 

  29. C. Guerrero, M. Tessler, M. Paul, J. Lerendegui-Marco, S. Heinitz, E. Maugeri, C. Domingo-Pardo, R. Dressler, S. Halfon, N. Kivel, U. Köster, T. Palchan-Hazan, J. Quesada, D. Schumann, L. Weissman, The \(s\)-process in the Nd-Pm-Sm region: Neutron activation of \(^{147}\)Pm. Phys. Lett. B 797, 134809 (2019). https://doi.org/10.1016/j.physletb.2019.134809. https://www.sciencedirect.com/science/article/pii/S0370269319305192

  30. C. Guerrero, J. Lerendegui-Marco, M. Paul, M. Tessler, S. Heinitz, C. Domingo-Pardo, S. Cristallo, R. Dressler, S. Halfon, N. Kivel, U. Köster, E.A. Maugeri, T. Palchan-Hazan, J.M. Quesada, D. Rochman, D. Schumann, L. Weissman, O. Aberle, S. Amaducci, J. Andrzejewski, L. Audouin, V. Bécares, M. Bacak, J. Balibrea, A. Barak, M. Barbagallo, S. Barros, F. Bečvá ř, C. Beinrucker, D. Berkovits, E. Berthoumieux, J. Billowes, D. Bosnar, M. Brugger, Y. Buzaglo, M. Caamaño, F. Calviño, M. Calviani, D. Cano-Ott, R. Cardella, A. Casanovas, D.M. Castelluccio, F. Cerutti, Y.H. Chen, E. Chiaveri, N. Colonna, G. Cortés, M.A. Cortés-Giraldo, L. Cosentino, H. Dafna, A. Damone, M. Diakaki, M. Dietz, E. Dupont, I. Durán, Y. Eisen, B. Fernández-Domínguez, A. Ferrari, P. Ferreira, P. Finocchiaro, V. Furman, K. Göbel, A.R. García, A. Gawlik, T. Glodariu, I.F. Gonçalves, E. González-Romero, A. Goverdovski, E. Griesmayer, F. Gunsing, H. Harada, T. Heftrich, J. Heyse, T. Hirsh, D.G. Jenkins, E. Jericha, F. Käppeler, Y. Kadi, B. Kaizer, T. Katabuchi, P. Kavrigin, V. Ketlerov, V. Khryachkov, D. Kijel, A. Kimura, M. Kokkoris, A. Kriesel, M. Krtička, E. Leal-Cidoncha, C. Lederer-Woods, H. Leeb, S. Lo Meo, S.J. Lonsdale, R. Losito, D. Macina, A. Manna, J. Marganiec, T. Martínez, C. Massimi, P. Mastinu, M. Mastromarco, F. Matteucci, E. Mendoza, A. Mengoni, P.M. Milazzo, M.A. Millán-Callado, F. Mingrone, M. Mirea, S. Montesano, A. Musumarra, R. Nolte, A. Oprea, N. Patronis, A. Pavlik, J. Perkowski, L. Piersanti, I. Porras, J. Praena, K. Rajeev, T. Rauscher, R. Reifarth, T. Rodríguez-González, P.C. Rout, C. Rubbia, J.A. Ryan, M. Sabaté-Gilarte, A. Saxena, P. Schillebeeckx, S. Schmidt, A. Shor, P. Sedyshev, A.G. Smith, A. Stamatopoulos, G. Tagliente, J.L. Tain, A. Tarifeño Saldivia, L. Tassan-Got, A. Tsinganis, S. Valenta, G. Vannini, V. Variale, P. Vaz, A. Ventura, V. Vlachoudis, R. Vlastou, A. Wallner, S. Warren, M. Weigand, C. Weiss, C. Wolf, P.J. Woods, T. Wright, P. Žugec, Neutron capture on the \(s\)-process branching point \(^{171}\rm Tm\) via time-of-flight and activation. Phys. Rev. Lett. 125, 142701 (2020). https://doi.org/10.1103/PhysRevLett.125.142701

  31. M. Friedman, D. Cohen, M. Paul, D. Berkovits, Y. Eisen, G. Feinberg, G. Giorginis, S. Halfon, A. Krása, A. Plompen, A. Shor, Simulation of the neutron spectrum from the \(^7\)Li\((p, n)\) reaction with a liquid-lithium target at soreq applied research accelerator facility. Nucl. Instrum. Methods Phys. Res. A 698, 117–126 (2013). https://doi.org/10.1016/j.nima.2012.09.027. www.sciencedirect.com/science/article/pii/S0168900212010820

  32. H. Liskien, A. Paulsen, Neutron production cross sections and energies for the reactions \(^7\)Li\((p, n)^7\)Be and \(^7\)Li\((p, n)^7\)Be\(^{\ast }\). Atom. Data Nucl. Data Tables 15(1), 57–84 (1975). https://doi.org/10.1016/0092-640X(75)90004-2. www.sciencedirect.com/science/article/pii/0092640X75900042

  33. J.H. Gibbons, R.L. Macklin, Total neutron yields from light elements under proton and alpha bombardment. Phys. Rev. 114, 571–580 (1959). https://doi.org/10.1103/PhysRev.114.571

    Article  Google Scholar 

  34. C. Lee, X.L. Zhou, Thick target neutron yields for the \(^7\)Li\((p,n)^7\)Be reaction near threshold. Nucl. Instrum. Methods Phys. Res. Sec. B 152(1), 1–11 (1999). https://doi.org/10.1016/S0168-583X(99)00026-9. http://www.sciencedirect.com/science/article/pii/S0168583X99000269

  35. J. Ziegler, M. Ziegler, J. Biersack, Srim—the stopping and range of ions in matter. Nucl. Instrum. MethodsPhys. Res. B 268(11), 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091. http://www.sciencedirect.com/science/article/pii/S0168583X10001862. 19th International Conference on Ion Beam Analysis

  36. R. Pachuau, B. Lalremruata, N. Otuka, L.R. Hlondo, L.R. Punte, H.H. Thanga, Thick and thin target \(^7\)Li\((p, n)^7\)Be neutron spectra below the three-body breakup reaction threshold. Nucl. Sci. Eng. 187(1), 70–80 (2017). https://doi.org/10.1080/00295639.2017.1291053

    Article  Google Scholar 

  37. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.G. Cadenas, I. González, G.G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P.M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E.D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E.S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506(3), 250 – 303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8. http://www.sciencedirect.com/science/article/pii/S0168900203013688

  38. D. Zahnow, C. Angulo, C. Rolfs, S. Schmidt, W.H. Schulte, E. Somorjai, The S(E) factor of \(^7\)Li\((p, \gamma )^8\)Be and consequences for S(E) extrapolation in \(^7\)Be\((p, \gamma _0)^8\)B. Zeitschrift für Physik A Hadrons and Nuclei 351(2), 229–236 (1995). https://doi.org/10.1007/BF01289534

    Article  Google Scholar 

  39. G.P. Antropov, I.E. Mitrofanov, A.I. Prokofev, V.S. Russkikh, Photoneutron cross sections of \(^{90}\)Zr and \(^{91}\)Zr. Izv. Rossiiskoi Akademii Nauk, Ser.Fiz 33, 700 (1969)

    Google Scholar 

  40. D. Brajnik, D. Jamnik, G. Kernel, M. Korun, U. Miklavzic, B. Pucelj, A. Stanovnik, Photonuclear reactions in \(^{90}\)zr. Phys. Rev. C 13, 1852 (1976). https://doi.org/10.1103/PhysRevC.13.1852

    Article  Google Scholar 

  41. R.L. Macklin, J.H. Gibbons, Capture-cross-section studies for \(30-220\) kev neutrons using a new technique. Phys. Rev. 159(4), 1007–1012 (1967). https://doi.org/10.1103/PhysRev.159.1007

    Article  Google Scholar 

  42. I. Dillmann, R. Plag, F. Käppeler, T. Rauscher, in EFNUDAT Fast Neutrons—scientific workshop on neutron measurements, theory and applications (JRC-IRMM, Geel, Belgium, 2009). http://www.kadonis.org/

  43. K.A. Toukan, F. Käppeler, The stellar neutron capture cross sections of Zr-94 and Zr-96. Astrophys. J. 348, 357–362 (1990). https://doi.org/10.1086/168243. adsabs.harvard.edu/abs/1990ApJ.348.357T

  44. A. Shor, M. Tessler, A. Plompen, A. Arenshtam, O. Aviv, D. Berkovits, M. Brandis, Y. Eisen, I. Eliyahu, G. Feinberg, M. Friedman, S. Halfon, M. Hult, B. Kaizer, D. Kijel, A. Krása, A. Kreisel, T. Palchan, M. Paul, A. Perry, I. Silverman, S. Vaintraub, L. Weissman, Bismuth activation with quasi-maxwellian neutrons at \(kt\sim \)30 kev. Phys. Rev. C 96, 055805 (2017). https://doi.org/10.1103/PhysRevC.96.055805

    Article  Google Scholar 

  45. A. Shor, L. Weissman, O. Aviv, Y. Eisen, M. Brandis, M. Paul, A. Plompen, M. Tessler, S. Vaintraub, Branching ratio to the 803 kev level in \(^{210}{\rm Po}\alpha \) decay. Phys. Rev. C 97, 034303 (2018). https://doi.org/10.1103/PhysRevC.97.034303

    Article  Google Scholar 

  46. S. Pavetich, A. Wallner, M. Martschini, S. Akhmadaliev, I. Dillmann, K. Fifield, S. Halfon, T. Heftrich, F. Käppeler, C. Lederer-Woods, S. Merchel, M. Paul, R. Reifarth, G. Rugel, P. Steier, M. Tessler, S. Tims, M. Weigand, L. Weissman, Accelerator mass spectrometry measurement of the reaction \(^{35}\rm Cl (n,\gamma )^{36}{\rm Cl}\) at kev energies. Phys. Rev. C 99, 015801 (2019). https://doi.org/10.1103/PhysRevC.99.015801

    Article  Google Scholar 

  47. M. Tessler, M. Paul, S. Halfon, Y. Kashiv, D. Kijel, A. Kreisel, A. Shor, L. Weissman, Stellar \(s\)-process neutron capture cross sections of \(^{69,71}{\rm Ga}\). Phys. Rev. C 105, 035801 (2022). https://doi.org/10.1103/PhysRevC.105.035801

    Article  Google Scholar 

  48. S. Pavetich, A. Carey, L. Fifield, M.B. Froehlich, S. Halfon, A. Kinast, M. Martschini, D. Nelson, M. Paul, A. Shor, J.H. Sterba, M. Tessler, S.G. Tims, L. Weissman, A. Wallner, \(^{93}\)Zr developments at the heavy ion accelerator facility at anu. Nucl. Instrum. Meth. Phys. Res. Sec. B 438, 77 – 83 (2019). https://doi.org/10.1016/j.nimb.2018.07.019. http://www.sciencedirect.com/science/article/pii/S0168583X18304373

  49. L. Weissman, M. Tessler, A. Arenshtam, I. Eliyahu, S. Halfon, C. Guerrero, B. Kaizer, D. Kijel, A. Kreisel, T. Palchan, M. Paul, A. Perry, G. Schimel, I. Silverman, A. Shor, N. Tamim, S. Vaintraub, Measurement of \(^{208}\)Pb\((n,\gamma )^{209}\)Pb maxwellian averaged neutron capture cross section. Phys. Rev. C 96, 015802 (2017). https://doi.org/10.1103/PhysRevC.96.015802

    Article  Google Scholar 

  50. G. Gyürky, Z. Fülöp, F. Käppeler, G. Kiss, A. Wallner, The activation method for cross section measurements in nuclear astrophysics. Eur. Phys. J. A 55, 41 (2019). https://doi.org/10.1140/epja/i2019-12708-4

    Article  Google Scholar 

  51. M. Paul, R.C. Pardo, P. Collon, W. Kutschera, K.E. Rehm, R. Scott, R.C. Vondrasek, Positive-ion accelerator mass spectrometry at atlas: Peaks and pits. Nucl. Instrum. Methods Phys. Res. Sec. B 456, 222 – 229 (2019). https://doi.org/10.1016/j.nimb.2019.04.003. http://www.sciencedirect.com/science/article/pii/S0168583X19301879

  52. Z.T. Lu, P. Schlosser, W. Smethie, N. Sturchio, T. Fischer, B. Kennedy, R. Purtschert, J. Severinghaus, D. Solomon, T. Tanhua, R. Yokochi, Tracer applications of noble gas radionuclides in the geosciences. Earth Sci. Rev. 138, 196–214 (2014). https://doi.org/10.1016/j.earscirev.2013.09.002. www.sciencedirect.com/science/article/pii/S0012825213001517

  53. Z.T. Lu. A primer on atom trap trace analysis (ATTA) (2022). https://atta.ustc.edu.cn/en-us/events/attaprimer_publication.html

  54. A. Shor, B. Kaizer, I. Eliyahu, T. Hirsh, Y. Eisen, A. Kreisel, L. Weissman, A. Perry, I. Mardor, S. Halfon, E. Farber, G. Feinberg, D. Kijel, Y. Mishnayot, S. Vaintraub, H. Yishai, H. Dafna, S. Yakobi, Fast chopper for single radio-frequency quadrupole bunch selection for neutron time-of-flight capabilities. Phys. Rev. Accel. Beams 22, 020403 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.020403

    Article  Google Scholar 

  55. X. Ledoux, M. Aïche, M. Avrigeanu, V. Avrigeanu, E. Balanzat, B. Ban-dÉtat, G. Ban, E. Bauge, G. Bélier, P. Bém, C. Borcea, T. Caillaud, A. Chatillon, S. Czajkowski, P. Dessagne, D. Doré, U. Fischer, M.O. Frégeau, J. Grinyer, S. Guillous, F. Gunsing, C. Gustavsson, G. Henning, B. Jacquot, K. Jansson, B. Jurado, M. Kerveno, A. Klix, O. Landoas, F.R. Lecolley, J.L. Lecouey, M. Majerle, N. Marie, T. Materna, J. Mrázek, F. Negoita, J. Novák, S. Oberstedt, A. Oberstedt, S. Panebianco, L. Perrot, A.J.M. Plompen, S. Pomp, A.V. Prokofiev, J.M. Ramillon, F. Farget, D. Ridikas, B. Rossé, O. Sérot, S.P. Simakov, E. Simecková, M. Stefánik, J.C. Sublet, J. Taïeb, D. Tarrío, L. Tassan-Got, I. Thfoin, C. Varignon, The neutrons for science facility at spiral-2. EPJ Web Conf. 146, 03003 (2017). https://doi.org/10.1051/epjconf/201714603003

    Article  Google Scholar 

  56. X. Ledoux, M. Aïche, M. Avrigeanu, V. Avrigeanu, E. Balanzat, B. Ban-d’Etat, G. Ban, E. Bauge, G. Bélier, P. Bém, C. Borcea, T. Caillaud, A. Chatillon, S. Czajkowski, P. Dessagne, D. Doré, U. Fischer, M.O. Frégeau, J. Grinyer, S. Guillous, F. Gunsing, C. Gustavsson, G. Henning, B. Jacquot, K. Jansson, B. Jurado, M. Kerveno, A. Klix, O. Landoas, F.R. Lecolley, J.L. Lecouey, M. Majerle, N. Marie, T. Materna, J. Mrázek, J. Novák, S. Oberstedt, A. Oberstedt, S. Panebianco, L. Perrot, A.J.M. Plompen, S. Pomp, A.V. Prokofiev, J.M. Ramillon, F. Farget, D. Ridikas, B. Rossé, O. Serot, S.P. Simakov, E. Simecková, M. Stanoiu, M. Stefánik, J.C. Sublet, J. Taïeb, D. Tarrío, L. Tassan-Got, I. Thfoin, C. Varignon, Neutrons for Science Facility at SPIRAL-2. Radiat. Prot. Dosim. 180(1–4), 115–119 (2017). https://doi.org/10.1093/rpd/ncx257. academic.oup.com/rpd/article-pdf/180/1-4/115/25409825/ncx257.pdf

  57. X. Ledoux, J.C. Foy, J.E. Ducret, A.M. Frelin, D. Ramos, J. Mrazek, E. Simeckova, R. Behal, L. Caceres, V. Glagolev, B. Jacquot, A. Lemasson, J. Pancin, J. Piot, C. Stodel, M. Vandebrouck, First beams at neutrons for science. Eur. Phys. J. A 57, 257 (2021). https://doi.org/10.1140/epja/s10050-021-00565-x. www.sciencedirect.com/science/article/pii/S0168900220307622

  58. I. Eliyahu, S. Vaintraub, I. Mardor, A. Arenshtam, E. Shvero, E. Reinfeld, O. Ozery, M. Alphaa, R. Raz, M. Bukai, E. Barami, T. Zaharoni, D. Moreno, A. Kreisel. High power beam dump and neutron sources for SARAF Phase II (2019). http://www-llb.cea.fr/UCANS8-2019/Eliyahu_poster.pdf

  59. C. Guerrero, S. Altstadt, S. Andriamonje, J. Andrzejewski, L. Audouin, M. Barbagallo, V. Becares, F. Becvar, F. Belloni, E. Berthoumieux, J. Billowes, V. Boccone, D. Bosnar, M. Brugger, M. Calviani, F. Calvino, D. Cano-Ott, C. Carrapico, F. Cerutti, E. Chiaveri, M. Chin, N. Colonna, M. Cortes-Giraldo, G. Cortes, M. Diakaki, C. Domingo-Pardo, R. Dressler, I. Duran, N. Dzysiuk, C. Eleftheriadis, A. Ferrari, K. Fraval, S. Ganesan, A. Garcia, G. Giubrone, K. Göbel, M. Gomez-Hornillos, I. Goncalves, E. Gonzalez-Romero, E. Griesmayer, F. Gunsing, P. Gurusamy, A. Hernandez-Prieto, D. Jenkins, E. Jericha, Y. Kadi, F. Käppeler, D. Karadimos, N. Kivel, P. Koehler, M. Kokkoris, J. Kroll, M. Krticka, C. Lampoudis, C. Langer, E. Leal-Cidoncha, C. Lederer, H. Leeb, L. Leong, R. Losito, A. Manousos, J. Marganiec, T. Martinez, C. Massimi, P. Mastinu, M. Mastromarco, M. Meaze, E. Mendoza, A. Mengoni, P. Milazzo, F. Mingrone, M. Mirea, W. Mondalaers, T. Papaevangelou, C. Paradela, A. Pavlik, J. Perkowski, A. Plompen, J. Praena, J. Quesada, T. Rauscher, R. Reifarth, A. Riego, F. Roman, C. Rubbia, M. Sabate-Gilarte, R. Sarmento, A. Saxena, P. Schillebeeckx, S. Schmidt, D. Schumann, P. Steinegger, G. Tagliente, J. Tain, D. Tarrio, L. Tassan-Got, A. Tsinganis, S. Valenta, G. Vannini, V. Variale, P. Vaz, A. Ventura, M. Vermeulen, R. Versaci, V. Vlachoudis, R. Vlastou, A. Wallner, T. Ware, M. Weigand, C. Weiss, T. Wright, P. Zugec, Performance of the neutron time-of-flight facility n_TOF at CERN. Eur. Phys. J. A 49, 27 (2013). https://doi.org/10.1140/epja/i2013-13027-6

    Article  Google Scholar 

  60. P.W. Lisowski, K.F. Schoenberg, The los alamos neutron science center. Nucl. Instrum. Meth. Phys. Res. Sec. A 562(2), 910–914 (2006). https://doi.org/10.1016/j.nima.2006.02.178. https://www.sciencedirect.com/science/article/pii/S0168900206003792. Proceedings of the 7th International Conference on Accelerator Applications

  61. S.F. Nowicki, S.A. Wender, M. Mocko, The los alamos neutron science center spallation neutron sources. Physics Procedia 90, 374–380 (2017). https://doi.org/10.1016/j.phpro.2017.09.035. https://www.sciencedirect.com/science/article/pii/S1875389217301943. Conference on the Application of Accelerators in Research and Industry, CAARI 2016, 30 October - 4 November 2016, Ft. Worth, TX, USA

  62. D. Ene, C. Borcea, S. Kopecky, W. Mondelaers, A. Negret, A. Plompen, Global characterisation of the gelina facility for high-resolution neutron time-of-flight measurements by monte carlo simulations. Nucl. Instrum. Meth. Phys. Res. Sec. A 618(1), 54–68 (2010). https://doi.org/10.1016/j.nima.2010.03.005. https://www.sciencedirect.com/science/article/pii/S0168900210005589

  63. D.D. Clayton, S.A. Colgate, G.J. Fishman, Gamma-ray lines from young supernova remnants. Astrophys. J. 155, 75 (1969). https://doi.org/10.1086/149849

    Article  Google Scholar 

  64. S. Matz, G. Share, M. Leising, E. Chupp, W. Vestrandt, W. Purcell, M. Strickman, C. Reppin, Gamma-ray line emission from SN1987A. Nature 331(6155), 416–418 (1988). https://doi.org/10.1038/331416a0

    Article  Google Scholar 

  65. R. Diehl, N. Prantzos, P. Von Ballmoos, Astrophysical constraints from gamma-ray spectroscopy. Nucl. Phys. A 777, 70–97 (2006). https://doi.org/10.1016/j.nuclphysa.2005.02.155

    Article  Google Scholar 

  66. W. Wang, M.G. Lang, R. Diehl, H. Halloin, P. Jean, J. Knödlseder, K. Kretschmer, P. Martin, J.P. Roques, A.W. Strong, C. Winkler, X.L. Zhang, Spectral and intensity variations of Galactic \(^{26}\)Al emission. Astron. Astrophys. 496(3), 713–724 (2009). https://doi.org/10.1051/0004-6361/200811175

    Article  Google Scholar 

  67. S.A. Grebenev, A.A. Lutovinov, S.S. Tsygankov, C. Winkler, Hard-X-ray emission lines from the decay of \(^{44}\)Ti in the remnant of supernova 1987A. Nature 490(7420), 373–375 (2012). https://doi.org/10.1038/nature11473

    Article  Google Scholar 

  68. J. José, Stellar explosions: hydrodynamics and nucleosynthesis (CRC Press, 2016). https://doi.org/10.1080/00107514.2016.1249520

  69. M. Limongi, A. Chieffi, Hydrodynamical modeling of the light curves of core-collapse supernovae with HYPERION. I. The mass range \(13-25 { M}_{\odot }\), the metallicities \(-3\le \) [Fe/H] \(\le 0\), and the case of sn 1999em. Astrophys. J. 902(2), 95 (2020). https://doi.org/10.3847/1538-4357/abb4e8

    Article  Google Scholar 

  70. J. José, C. Iliadis, Nuclear astrophysics: the unfinished quest for the origin of the elements. Rep. Prog. Phys. 74(9), 096901 (2011). https://doi.org/10.1088/0034-4885/74/9/096901

    Article  Google Scholar 

  71. P. Hoppe, A. Besmehn, Evidence for extinct vanadium-49 in presolar silicon carbide grains from supernovae. Astrophys. J. 576(1), L69–L72 (2002). https://doi.org/10.1086/342785

    Article  Google Scholar 

  72. F. Gyngard, E. Zinner, L.R. Nittler, A. Morgand, F.J. Stadermann, K.M. Hynes, Automated nanoSIMS measurements of spinel stardust from the Murray meteorite. Astrophys. J. 717, 107–120 (2010). https://doi.org/10.1088/0004-637X/717/1/107

    Article  Google Scholar 

  73. A.M. Davis, Stardust in meteorites. Proc. Natl. Acad. Sci. U. S. A. 108(48) (2011). https://doi.org/10.1073/pnas.1013483108

  74. M. Friedman, Production of quasi-stellar neutron field at explosive stellar temperatures. Eur. Phys. J. A 56, 1–7 (2020). https://doi.org/10.1140/epja/s10050-020-00170-4

    Article  Google Scholar 

  75. C. Iliadis, A. Champagne, A. Chieffi, M. Limongi, The effects of thermonuclear reaction rate variations on \(^{26}\)Al production in massive stars: a sensitivity study. Astrophys. J. Suppl. Ser. 193(1), 16 (2011). https://doi.org/10.1088/0067-0049/193/1/16

    Article  Google Scholar 

  76. K. Hermansen, S.M. Couch, L.F. Roberts, H. Schatz, M.L. Warren, Reaction rate sensitivity of the production of \(\gamma \)-ray emitting isotopes in core-collapse supernovae. Astrophys. J. 901(1), 77 (2020). https://doi.org/10.3847/1538-4357/abafb5

    Article  Google Scholar 

  77. G.F. Auchampaugh, J. Halperin, R.L. MacKlin, W.M. Howard, Kilovolt \(^{33}\)S\((n,\alpha )\) and \(^{33}\)S\((n,\gamma )\) cross sections: importance in the nucleosynthesis of the rare nucleus \(^{36}\)S. Phys. Rev. C 12(4), 1126–1133 (1975). https://doi.org/10.1103/PhysRevC.12.1126

    Article  Google Scholar 

  78. R.D. Hoffman, S.E. Woosley, T.A. Weaver, T. Rauscher, F.K. Thielemann, The reaction rate sensitivity of nucleosynthesis in type II supernovae. Astrophys. J. 521(2), 735–752 (1999). https://doi.org/10.1086/307568

    Article  Google Scholar 

  79. A. Parikh, J. José, I.R. Seitenzahl, F.K. Röpke, The effects of variations in nuclear interactions on nucleosynthesis in thermonuclear supernovae. Astron. Astrophys. 557, A3 (2013). https://doi.org/10.1051/0004-6361/201321518

    Article  Google Scholar 

  80. S. Wanajo, H.T. Janka, S. Kubono, Uncertainties in the \(\nu \)p-process: supernova dynamics versus nuclear physics. Astrophys. J. 729(1), 46 (2011). https://doi.org/10.1088/0004-637x/729/1/46

    Article  Google Scholar 

  81. W. Rapp, J. Gorres, M. Wiescher, H. Schatz, F. Kappeler, Sensitivity of p-process nucleosynthesis to nuclear reaction rates in a 25 \(M_{\odot }\) supernova model. Astrophys. J. 653(1), 474–489 (2006). https://doi.org/10.1086/508402

    Article  Google Scholar 

  82. NEA nuclear data high priority request list (2021). https://www.oecd-nea.org/dbdata/hprl

  83. W. Plaß, T. Dickel, S. Purushothaman, P. Dendooven, H. Geissel, J. Ebert, E. Haettner, C. Jesch, M. Ranjan, M. Reiter, H. Weick, F. Amjad, S. Ayet, M. Diwisch, A. Estrade, F. Farinon, F. Greiner, N. Kalantar-Nayestanaki, R. Knöbel, J. Kurcewicz, J. Lang, I. Moore, I. Mukha, C. Nociforo, M. Petrick, M. Pfützner, S. Pietri, A. Prochazka, A.K. Rink, S. Rinta-Antila, D. Schäfer, C. Scheidenberger, M. Takechi, Y. Tanaka, J. Winfield, M. Yavor, The frs ion catcher - a facility for high-precision experiments with stopped projectile and fission fragments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 317, 457–462 (2013). https://doi.org/10.1016/j.nimb.2013.07.063. https://www.sciencedirect.com/science/article/pii/S0168583X13008823. XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2-7, 2012 at Matsue, Japan

  84. T. Dickel, I. Mardor, H. Wilsenach, J. Ashkenazy, W.R. Plaß, C. Scheidenberger, M.I. Yavor, Ng-trap: measuring neutron capture cross-sections of short-lived fission fragments. EPJ Web Conf. 260, 11021 (2022). https://doi.org/10.1051/epjconf/202226011021

    Article  Google Scholar 

  85. S. Profumo, M.J. Ramsey-Musolf, S. Tulin, Supersymmetric contributions to weak decay correlation coefficients. Phys. Rev. D 75, 075017 (2007). https://doi.org/10.1103/PhysRevD.75.075017

    Article  Google Scholar 

  86. B. Ohayon, H. Rahangdale, J. Chocron, Y. Mishnayot, R. Kosloff, O. Heber, G. Ron, Imaging recoil ions from optical collisions between ultracold, metastable neon isotopes. Phys. Rev. Lett. 123, 063401 (2019). https://doi.org/10.1103/PhysRevLett.123.063401

    Article  Google Scholar 

  87. B. Ohayon, H. Rahangdale, E. Parnes, G. Perelman, O. Heber, G. Ron, Decay microscope for trapped neon isotopes. Phys. Rev. C 101, 035501 (2020). https://doi.org/10.1103/PhysRevC.101.035501

    Article  Google Scholar 

  88. I. Mukul, M. Hass, O. Heber, T. Hirsh, Y. Mishnayot, M. Rappaport, G. Ron, Y. Shachar, S. Vaintraub, A 6He production facility and an electrostatic trap for measurement of the beta-neutrino correlation. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 899, 16–21 (2018). https://doi.org/10.1016/j.nima.2018.05.017. www.sciencedirect.com/science/article/pii/S0168900218306089

  89. A. Glick-Magid, C. Forssén, D. Gazda, D. Gazit, P. Gysbers, P. Navrátil, Nuclear ab initio calculations of 6He -decay for beyond the standard model studies. Phys. Lett. B 832, 137,259 (2022). https://doi.org/10.1016/j.physletb.2022.137259. https://www.sciencedirect.com/science/article/pii/S0370269322003938

  90. Y. Mishnayot, H. Rahangdale, B. Ohayon, S. Vaintraub, T. Hirsh, L. Weismann, A. Perry, A. Shor, A. Kreisel, S. Ya’akobi, E. Buznach, G. Ron, \(^{23}\)Ne production at SARAF-I. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment 978, 164365 (2020). https://doi.org/10.1016/j.nima.2020.164365. https://www.sciencedirect.com/science/article/pii/S0168900220307622

Download references

Acknowledgements

The Authors are grateful to SARAF Phase II team and management (Soreq NRC) for their cooperation and permission to present an outlook of the facility in construction. The TRAPLAB setup is developed at SARAF by G. Ron (The Hebrew University of Jerusalem) and his team. We gratefully acknowledge the support over the years of Pazy Foundation (Israel), Israel Science Foundation (ISF), USA-Israel Binational Science Foundation (BSF) and German Israel Foundation (GIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Paul.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, M., Tessler, M., Friedman, M. et al. The liquid-lithium target at the soreq applied research accelerator facility. Eur. Phys. J. A 58, 207 (2022). https://doi.org/10.1140/epja/s10050-022-00863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00863-y

Navigation