Skip to main content
Log in

A.I. for nuclear physics

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

This report is an outcome of the workshop AI for Nuclear Physics held at Thomas Jefferson National Accelerator Facility on March 4–6, 2020

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper is the proceedings of a workshop. All data presented is available in the original sources.]

Notes

  1. Machine learning enables computers to learn from experience or examples.

  2. Deep learning is a class of ML algorithm that are composed of multiple hidden layers.

References

  1. The National Artificial Intelligence Research and Development Strategic Plan. https://www.nitrd.gov/pubs/national_ai_rd_strategic_plan.pdf. Accessed 11 Mar 2020

  2. Artificial intelligence for the American People website. https://trumpwhitehouse.archives.gov/ai/. Accessed 11 Mar 2020

  3. Reaching for the Horizon: The 2015 Long Range Plan for Nuclear Science (2015). https://www.osti.gov/biblio/1296778

  4. Nuclear Physics and Quantum Information Science. https://science.osti.gov/-/media/np/pdf/Reports/NSAC_QIS_Report.pdf la=en&hash=91703C70429F2B7D634CBC10573079858926141D. Accessed Oct 2019

  5. Neurodata without Borders project web site. https://www.nwb.org

  6. CANDLE project web site. https://candle.cels.anl.gov

  7. A. Alexandru, P.F. Bedaque, H. Lamm, S. Lawrence, N.C. Warrington, Fermions at finite density in \(2+1\) dimensions with sign-optimized manifolds. Phys. Rev. Lett. 121, 191602 (2018a). https://doi.org/10.1103/PhysRevLett.121.191602

    Article  ADS  Google Scholar 

  8. Y. Mori, K. Kashiwa, A. Ohnishi, Toward solving the sign problem with path optimization method. Phys. Rev. D. 96, 111501 (2017)

    ADS  MathSciNet  Google Scholar 

  9. A. Alexandru, P.F. Bedaque, H. Lamm, S. Lawrence, Finite-density Monte Carlo calculations on sign-optimized manifolds. Phys. Rev. D 97, 094510 (2018b)

    ADS  Google Scholar 

  10. F. Bursa, M. Kroyter, A simple approach towards the sign problem using path optimisation. JHEP 12, 054 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  11. A. Ohnishi, Y. Mori, K. Kashiwa, Path Optimization for the sign problem in field theories using neural network. JPS Conf. Proc. 26, 024011 (2019)

    Google Scholar 

  12. J.-L. Wynen, E. Berkowitz, S. Krieg, T. Luu, J. Ostmeyer, “Leveraging machine learning to alleviate hubbard model sign problems” (2020), arXiv:2006.11221 [cond-mat.str-el]

  13. M.S. Albergo, G. Kanwar, P.E. Shanahan, Flow-based generative models for Markov chain Monte Carlo in lattice field theory. Phys. Rev. D 100, 034515 (2019). https://doi.org/10.1103/PhysRevD.100.034515

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Kanwar, M.S. Albergo, D. Boyda, K. Cranmer, D.C. Hackett, S. Racanière, D.J. Rezende, P.E. Shanahan, “Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 125, 121601 (2020)

    ADS  MathSciNet  Google Scholar 

  15. G. Pederiva, A. Shindler, Machine Learning for Hadron Correlators from lattice QCD to be published (2020)

  16. S. Gazula, J.W. Clark, H. Bohr, Learning and prediction of nuclear stability by neural networks. Nucl. Phys. A 540, 1–26 (1992)

    ADS  Google Scholar 

  17. K.A. Gernoth, J.W. Clark, J.S. Prater, H. Bohr, Neural network models of nuclear systematics. Phys. Lett. B 300, 1–7 (1993)

    ADS  Google Scholar 

  18. J.A. Melendez, R.J. Furnstahl, D.R. Phillips, M.T. Pratola, S. Wesolowski, Quantifying correlated truncation errors in effective field theory. Phys. Rev. C 100, 044001 (2019)

    ADS  Google Scholar 

  19. L. Neufcourt, Y. Cao, S.A. Giuliani, W. Nazarewicz, E. Olsen, O.B. Tarasov, Quantified limits of the nuclear landscape. Phys. Rev. C 101, 044307 (2020a)

    ADS  Google Scholar 

  20. R. Utama, J. Piekarewicz, H.B. Prosper, Nuclear mass predictions for the crustal composition of neutron stars: a Bayesian neural network approach. Phys. Rev. C 93, 014311 (2016a)

    ADS  Google Scholar 

  21. R. Utama, J. Piekarewicz, Refining mass formulas for astrophysical applications: A Bayesian neural network approach. Phys. Rev. C 96, 044308 (2017)

    ADS  Google Scholar 

  22. Z.M. Niu, H.Z. Liang, Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 778, 48–53 (2018)

    ADS  Google Scholar 

  23. L. Neufcourt, Y. Cao, W. Nazarewicz, F. Viens, Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C 98, 034318 (2018)

    ADS  Google Scholar 

  24. L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, F. Viens, Neutron drip line in the Ca region from Bayesian model averaging. Phys. Rev. Lett. 122, 062502 (2019)

    ADS  Google Scholar 

  25. L. Neufcourt, Y. Cao, S. Giuliani, W. Nazarewicz, E. Olsen, O.B. Tarasov, Beyond the proton drip line: bayesian analysis of proton-emitting nuclei. Phys. Rev. C 101, 014319 (2020b)

    ADS  Google Scholar 

  26. Z.M. Niu, J.Y. Fang, Y.F. Niu, Comparative study of radial basis function and bayesian neural network approaches in nuclear mass predictions. Phys. Rev. C 100, 054311 (2019a)

    ADS  Google Scholar 

  27. T. M. Sprouse, R.  Navarro Perez, R.  Surman, M. R. Mumpower, G. C. McLaughlin, N.  Schunck, Propagation of statistical uncertainties of Skyrme mass models to simulations of \(r\)-process nucleosynthesis, Phys. Rev. C 101, 055803 (2020)

  28. A. Pastore, D. Neill, H. Powell, K. Medler, C. Barton, Impact of statistical uncertainties on the composition of the outer crust of a neutron star. Phys. Rev. C 101, 035804 (2020)

    ADS  Google Scholar 

  29. R. Utama, W.C. Chen, J. Piekarewicz, “Nuclear charge radii: density functional theory meets Bayesian neural networks. J. Phys. G 43, 114002 (2016b). https://doi.org/10.1088/0954-3899/43/11/114002

    Article  ADS  Google Scholar 

  30. Y. Ma, S. Chen, J. Liu, Z. Ren, X. Chang, Y. Gao, “Predictions of nuclear charge radii and physical interpretations based on the naive Bayesian probability classifier. Phys. Rev. C 101, 014304 (2020a)

    ADS  Google Scholar 

  31. S. Akkoyun, N. Laouet, F. Benrachi, Improvement Studies of an Effective Interaction for N=Z sd-shell Nuclei by Neural Networks” (2020), arXiv:2001.08561 [nucl-th]

  32. S.  Akkoyun, H.  Kaya, First excited 2+ energy state estimations of even–even nuclei by using artificial neural networks (2020), arXiv:2002.08218 [nucl-th]

  33. R.-D. Lasseri, D. Regnier, J.-P. Ebran, A. Penon, Taming nuclear complexity with a committee of multilayer neural networks. Phys. Rev. Lett. 124, 162502 (2020)

    ADS  Google Scholar 

  34. Z.M. Niu, H.Z. Liang, B.H. Sun, W.H. Long, Y.F. Niu, Predictions of nuclear \(\beta \)-decay half-lives with machine learning and their impact on \(r\)-process nucleosynthesis. Phys. Rev. C 99, 064307 (2019b)

    ADS  Google Scholar 

  35. N. J. Costiris, E.  Mavrommatis, K. A. Gernoth, J. W. Clark, and H.  Li, Statistical global modeling of Beta–Decay halflives systematics using multilayer feedforward neural networks and support vector machines, in 17th Symposium of the HELLENIC NUCLEAR PHYSICS SOCIETY ON NUCLEAR Physics Ioannina, Greece, May 30-31, 2008 (2008) arXiv:0809.0383 [nucl-th]

  36. U.B. Rodríguez, C.Z. Vargas, M. Gonçalves, S.B. Duarte, F. Guzmán, Alpha half-lives calculation of superheavy nuclei with \(Q\alpha \)-value predictions based on the Bayesian neural network approach. J. Phys. G46, 115109 (2019a)

    ADS  Google Scholar 

  37. U.B. Rodríguez, C.Z. Vargas, M. Gonçalves, S.B. Duarte, F. Guzmán, Bayesian Neural Network improvements to nuclear mass formulae and predictions in the SuperHeavy Elements region”. EPL 127, 42001 (2019)

    ADS  Google Scholar 

  38. Z.-A. Wang, J. Pei, Y. Liu, Y. Qiang, Bayesian evaluation of incomplete fission yields. Phys. Rev. Lett. 123, 122501 (2019)

    ADS  Google Scholar 

  39. A. Lovell, A. Mohan, P. Talou, M. Chertkov, “Constraining fission yields using machine learning. EPJ Web Conf. 211, 04006 (2019)

    Google Scholar 

  40. S. Wesolowski, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts. J. Phys. G 46, 045102 (2019)

    ADS  Google Scholar 

  41. P. Reinert, H. Krebs, E. Epelbaum, Precision determination of pion-nucleon coupling constants using effective field theory (2020), arXiv:2006.15360 [nucl-th]

  42. B. Kaspschak, U.-G. Meißner, How machine learning conquers the unitary limit ( 2020), arXiv:2003.09137 [physics.comp-ph]

  43. E. Epelbaum et al., Towards high-order calculations of three-nucleon scattering in chiral effective field theory. Eur. Phys. J. A 56, 92 (2020)

    ADS  Google Scholar 

  44. K. Kravvaris, K.R. Quinlan, S. Quaglioni, K.A. Wendt, P. Navrátil, Quantifying uncertainties in neutron-\({\alpha }\) scattering with chiral nucleon-nucleon and three-nucleon forces. Phys. Rev. C 102, 024616 (2020)

    ADS  Google Scholar 

  45. G.B. King, A.E. Lovell, L. Neufcourt, F.M. Nunes, Direct comparison between Bayesian and frequentist uncertainty quantification for nuclear reactions. Phys. Rev. Lett. 122, 232502 (2019). https://doi.org/10.1103/PhysRevLett.122.232502

    Article  ADS  Google Scholar 

  46. A.E. Lovell, F.M. Nunes, Constraining Transfer Cross Sections Using Bayes. Theorem” Phys. Rev. C 97, 064612 (2018)

    ADS  Google Scholar 

  47. M. Catacora-Rios, G.B. King, A.E. Lovell, F.M. Nunes, Exploring experimental conditions to reduce uncertainties in the optical potential. Phys. Rev. C 100, 064615 (2019). https://doi.org/10.1103/PhysRevC.100.064615

    Article  ADS  Google Scholar 

  48. C.-W. Ma, D. Peng, H.-L. Wei, Z.-M. Niu, Y.-T. Wang, R. Wada, Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method. Chinese Phys. C 44, 014104 (2020b). https://doi.org/10.1088/1674-1137/44/1/014104

    Article  ADS  Google Scholar 

  49. S. Akkoyun, “Estimation of fusion reaction cross-sections by artificial neural networks. NIM B 462, 51–54 (2020). https://doi.org/10.1016/j.nimb.2019.11.014

    Article  ADS  Google Scholar 

  50. M. R. Schindler, D. R. Phillips, Bayesian Methods for Parameter Estimation in Effective Field Theories, Ann. Phys. 324, 682–708 (2009), [Erratum: Annals Phys. 324, 2051–2055 (2009)]

  51. J. A. Melendez, S.  Wesolowski, R. J. Furnstahl, Bayesian truncation errors in chiral effective field theory: nucleon–nucleon observables. Phys. Rev. C 96, 024003 (2017), arXiv:1704.03308

  52. W.G. Jiang, G. Hagen, T. Papenbrock, Extrapolation of nuclear structure observables with artificial neural networks. Phys. Rev. C 100, 054326 (2019)

    ADS  Google Scholar 

  53. G.A. Negoita, J.P. Vary, G.R. Luecke, P. Maris, A.M. Shirokov, I.J. Shin, Y. Kim, E.G. Ng, C. Yang, M. Lockner, G.M. Prabhu, Deep learning: Extrapolation tool for ab initio nuclear theory. Phys. Rev. C 99, 054308 (2019)

    ADS  Google Scholar 

  54. J.D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S.M. Wild, W. Nazarewicz, Uncertainty quantification for nuclear density functional theory and information content of new measurements. Phys. Rev. Lett. 114, 122501 (2015). https://doi.org/10.1103/PhysRevLett.114.122501

    Article  ADS  Google Scholar 

  55. S. Yoshida, N. Shimizu, T. Togashi, T. Otsuka, Uncertainty quantification in the nuclear shell model. Phys. Rev. C 98, 061301 (2018)

    ADS  Google Scholar 

  56. S. Yoshida, Nonparametric Bayesian approach to extrapolation problems in configuration interaction methods. Phys. Rev. C 102, 024305 (2020)

    ADS  Google Scholar 

  57. A. Ekström, C. Forssén, C. Dimitrakakis, D. Dubhashi, H.T. Johansson, A.S. Muhammad, H. Salomonsson, A. Schliep, Bayesian optimization in ab initio nuclear physics. J. Phys. G 46, 095101 (2019)

    ADS  Google Scholar 

  58. A. Ekström, G. Hagen, Global sensitivity analysis of bulk properties of an atomic nucleus. Phys. Rev. Lett. 123, 252501 (2019). https://doi.org/10.1103/PhysRevLett.123.252501

    Article  ADS  Google Scholar 

  59. A.  Ekström, Ab initio models of atomic nuclei: challenges and new ideas” (2019), arXiv:1912.02227 [nucl-th]

  60. V. Kejzlar, L. Neufcourt, W. Nazarewicz, P.-G. Reinhard, Statistical aspects of nuclear mass models. J. Phys. G 47, 094001 (2020)

    ADS  Google Scholar 

  61. J.W.T. Keeble, A. Rios, Machine learning the deuteron. Phys. Lett. B 809, 135743 (2020)

    Google Scholar 

  62. N. Schunck, L.M. Robledo, Microscopic theory of nuclear fission: a review. Rep. Prog. Phys. 79, 116301 (2016)

    ADS  Google Scholar 

  63. S. Akkoyun, T. Bayram, S.O. Kara, N. Yildiz, Consistent empirical physical formulas for potential energy curves of 38–66ti isotopes by using neural networks. Phys. Part. Nucl. Lett. 10, 528–534 (2013)

    Google Scholar 

  64. C.J. Horowitz et al., r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G 46, 083001 (2019)

    ADS  Google Scholar 

  65. R.  Navarro Pérez, N.  Schunck, A.  Dyhdalo, R. J. Furnstahl, S. K. Bogner, Microscopically based energy density functionals for nuclei using the density matrix expansion. ii. full optimization and validation, Phys. Rev. C 97, 054304 (2018)

  66. M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler, A. Pastore, Nuclear energy density optimization: shell structure. Phys. Rev. C 89, 054314 (2014). https://doi.org/10.1103/PhysRevC.89.054314

    Article  ADS  Google Scholar 

  67. S. Elhatisari, N. Li, A. Rokash, J.M. Alarcón, D. Du, N. Klein, B.-N. Lu, U.-G. Meißner, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, G. Rupak, Nuclear binding near a quantum phase transition. Phys. Rev. Lett. 117, 132501 (2016)

    ADS  Google Scholar 

  68. S. Elhatisari, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, N. Li, B.-N. Lu, U.-G. Meißner, Gautam Rupak, Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering. Phys. Rev. Lett. 119, 222505 (2017)

    ADS  Google Scholar 

  69. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U.-G. Meißner, Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018)

    ADS  MathSciNet  Google Scholar 

  70. W.G. Dawkins, J. Carlson, U. van Kolck, A. Gezerlis, Clustering of four-component unitary fermions. Phys. Rev. Lett. 124, 143402 (2020)

    ADS  Google Scholar 

  71. M. Sambataro, N. Sandulescu, Pairing correlations and eigenvalues of two-body density matrix in atomic nuclei. Ann. Phys. 413, 168061 (2020)

    MathSciNet  MATH  Google Scholar 

  72. M.A. Caprio, P.J. Fasano, P. Maris, A.E. McCoy, J.P. Vary, Probing ab initio emergence of nuclear rotation. Eur. Phys. J. A 56, 120 (2020)

    ADS  Google Scholar 

  73. P.  Morfouace, C.Y. Tsang, Y.  Zhang, W.G. Lynch, M.B. Tsang, D.D.S. Coupland, M.  Youngs, Z.  Chajecki, M.A. Famiano, T.K. Ghosh, G.  Jhang, Jenny Lee, H.  Liu, A.  Sanetullaev, R.  Showalter, J.  Winkelbauer, Constraining the symmetry energy with heavy-ion collisions and bayesian analyses, Phys. Lett. B 799, 135045 (2019)

  74. C.Y. Tsang, M.B. Tsang, Pawel Danielewicz, F.J. Fattoyev, W.G. Lynch, Insights on Skyrme parameters from GW170817. Phys. Lett. B 796, 1–5 (2019)

  75. Y. Lim, J.W. Holt, Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817. EPJA 55, 209 (2019). https://doi.org/10.1140/epja/i2019-12917-9

    Article  ADS  Google Scholar 

  76. A. Edelen, N. Neveu, Y. Huber, M. Frey, C. Mayes, A. Adelmann, “Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Phys. Rev. Accel. Beams 23, 044601 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.044601

    Article  ADS  Google Scholar 

  77. A.D. Solopova, A.  Carpenter, T.  Powers, Y.  Roblin, C.  Tennant, K.  Iftekharuddin, and L.  Vidyaratne, SRF Cavity Fault Classification Using Machine Learning at CEBAF” in Proc. 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19-24 May 2019, International Particle Accelerator Conference No.  10 ( JACoW Publishing, Geneva, Switzerland, 2019) pp. 1167–1170

  78. M. Rescic, R. Seviour, W. Blokland, Predicting particle accelerator failures using binary classifiers. Nucl. Instrum. Methods. Phys. Res. A 955, 163240 (2020)

    Google Scholar 

  79. Z.  Liu, Z.  He, S.M. Lidia, D.  Liu, Q.  Zhao, “Optimization of beam loss monitor network for fault modes, in Proc. 6th International Particle Accelerator Conference (IPAC’15), Richmond, VA, USA, May 3-8, 2015, International Particle Accelerator Conference No.  6 (JACoW, Geneva, Switzerland, 2015) pp. 1356–1358

  80. E.  Fol, J.M. Coello de Portugal, and R.  Tomás, Unsupervised machine learning for detection of faulty beam position monitors, in Proc. 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19-24 May 2019, International Particle Accelerator Conference No.  10 (JACoW Publishing, Geneva, Switzerland, 2019) pp. 2668–2671

  81. A. Amthor, Z.M. Schillaci, D. Morrissey, M. Portillo, S. Schwarz, M. Steiner, C.S. Sumithrarachchi, Experimental test of an online ion-optics optimizer. Nucl. Instrum. Methods Phys. Res. A 895, 90–99 (2018)

    ADS  Google Scholar 

  82. A.  Aurisano, A.  Radovic, D.  Rocco, A.  Himmel, M.D. Messier, E.  Niner, G.  Pawloski, F.  Psihas, A.  Sousa, P.  Vahle, A convolutional neural network neutrino event classifier. J. Instrum. 11, P09001 (2016) http://stacks.iop.org/1748-0221/11/i=09/a=P09001. Accessed Mar 11 2020

  83. M.P. Kuchera, R. Ramanujan, J.Z. Taylor, R.R. Strauss, D. Bazin, J. Bradt, R. Chen, Machine learning methods for track classification in the AT-TPC. Nucl. Instrum. Methods Phys. Res. A (2019). https://doi.org/10.1016/j.nima.2019.05.097

    Article  Google Scholar 

  84. S. Delaquis et al., Deep neural networks for energy and position reconstruction in EXO-200. J. Instrum. 13, P08023–P08023 (2018)

    Google Scholar 

  85. C. Adams et al., (MicroBooNE Collaboration), Deep neural network for pixel-level electromagnetic particle identification in the microboone liquid argon time projection chamber. Phys. Rev. D 99, 092001 (2019)

    ADS  Google Scholar 

  86. Y. S. Lai, Automated discovery of jet substructure analyses. (2018), arXiv:1810.00835 [nucl-th]

  87. F. Barbosa et al., A new transition radiation detector based on GEM technology. Nucl. Instrum. Meth. A942, 162356 (2019). https://doi.org/10.1016/j.nima.2019.162356

    Article  Google Scholar 

  88. G. Gavalian, P. Thomadakis, A. Angelopoulos, V. Ziegler, N. Chrisochoides, Using Artificial Intelligence for Particle Track Identification in CLAS12 Detector (2020), arXiv:2008.12860 [cs.CV]

  89. C. Fanelli, J. Pomponi, DeepRICH: Learning Deeply Cherenkov Detectors” Sci. Technol. 1, 015010 (2019), arXiv:1911.11717 [physics.data-an]

  90. E. Cisbani et al., AI-optimized detector design for the future electron-ion collider: the dual-radiator RICH case. J. Instrum. 15, P05009–P05009 (2020)

    Google Scholar 

  91. Y. Alanazi, N.  Sato, T. Liu, W.  Melnitchouk, M. P. Kuchera, E. Pritchard, M. Robertson, R. Strauss, L. Velasco, Y. Li, Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN). arXiv:2001.11103 (2020), arXiv:2001.11103 [hep-ph]

  92. R. Abdul Khalek et al. (NNPDF), Parton distributions with theory uncertainties: general formalism and first phenomenological studies. Eur. Phys. J. C 79, 931 (2019)

  93. N.  Sato, C.  Andres, J. J. Ethier, W.  Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration), Strange quark suppression from a simultaneous monte carlo analysis of parton distributions and fragmentation functions, Phys. Rev. D 101, 074020 (2020)

  94. J.J. Ethier, N. Sato, W. Melnitchouk, First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis. Phys. Rev. Lett. 119, 132001 (2017)

    ADS  Google Scholar 

  95. J. Rojo, Machine Learning tools for global PDF fits” in 13th Conference on Quark Confinement and the Hadron Spectrum (Confinement XIII) Maynooth, Ireland, July 31-August 6, 2018 (2018) arXiv:1809.04392 [hep-ph]

  96. J. Cammarota, L. Gamberg, Z.-B. Kang, J. A. Miller, D. Pitonyak, A. Prokudin, T. C. Rogers, N. Sato (Jefferson Lab Angular Momentum (JAM) Collaboration), Origin of single transverse-spin asymmetries in high-energy collisions. Phys. Rev. D 102, 054002 (2020). https://doi.org/10.1103/PhysRevD.102.054002

  97. K. Kumericki, D. Mueller, A. Schafer, Neural network generated parametrizations of deeply virtual Compton form factors. JHEP 07, 073 (2011)

    ADS  MATH  Google Scholar 

  98. K. Kumericki, S. Liuti, H. Moutarde, GPD phenomenology and DVCS fitting. Eur. Phys. J. A 52, 157 (2016)

    ADS  Google Scholar 

  99. H.-W. Lin et al., Parton distributions and lattice QCD calculations: a community white paper. Prog. Part. Nucl. Phys. 100, 107–160 (2018)

    ADS  Google Scholar 

  100. T. Sjostrand, S. Mrenna, P. Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008)

  101. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, D. Teaney, Principal component analysis of event-by-event fluctuations. Phys. Rev. Lett. 114, 152301 (2015). https://doi.org/10.1103/PhysRevLett.114.152301

    Article  ADS  Google Scholar 

  102. A. Mazeliauskas, D. Teaney, Subleading harmonic flows in hydrodynamic simulations of heavy ion collisions. Phys. Rev. C 91, 044902 (2015)

    ADS  Google Scholar 

  103. Z. Liu, W. Zhao, H. Song, Principal component analysis of collective flow in relativistic heavy-ion collisions. Eur. Phys. J. C 79, 870 (2019). https://doi.org/10.1140/epjc/s10052-019-7379-y

    Article  ADS  Google Scholar 

  104. S. Pratt, E. Sangaline, P. Sorensen, H. Wang, constraining the eq. of state of super-hadronic matter from heavy-ion collisions. Phys. Rev. Lett. 114, 202301 (2015)

  105. J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu, U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium. Phys. Rev. C 94, 024907 (2016)

    ADS  Google Scholar 

  106. J.E. Bernhard, J.S. Moreland, S.A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma. Nature Phys. 15, 1113–1117 (2019)

    ADS  Google Scholar 

  107. J. F. Paquet et al. (JETSCAPE), Revisiting Bayesian constraints on the transport coefficients of QCD (2020), arXiv:2002.05337 [nucl-th]

  108. X. Yingru, J.E. Bernhard, S.A. Bass, M. Nahrgang, S. Cao, Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions. Phys. Rev. C 97, 014907 (2018)

    ADS  Google Scholar 

  109. R. Soltz (Jetscape), Bayesian extraction of \(\hat{q}\) with multi-stage jet evolution approach. Proceedings, 9th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions: Hard Probes 2018 (HP2018): Aix-Les-Bains, France, October 1–5, 2018, PoS HardProbes2018, 048 (2019)

  110. Y. He, L.-G. Pang, X.-N. Wang, Bayesian extraction of jet energy loss distributions in heavy-ion collisions. Phys. Rev. Lett. 122, 252302 (2019)

    ADS  Google Scholar 

  111. S. A. Bass, A.  Bischoff, J. A. Maruhn, Horst Stoecker, W.  Greiner, Neural networks for impact parameter determination. Phys. Rev. C 53, 2358–2363 (1996)

  112. Y.-T. Chien, Probing heavy ion collisions using quark and gluon jet substructure with machine learning, Nucl. Phys. A 982, 619–622 (2019) (the 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2018)

  113. P.T. Komiske, E.M. Metodiev, J. Thaler, Energy flow polynomials: a complete linear basis for jet substructure. JHEP 2018, 13 (2018)

    Google Scholar 

  114. L.-G. Pang, K. Zhou, S. Nan, H. Petersen, H. Stöcker, X.-N. Wang, An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nature Commun. 9, 210 (2018)

    ADS  Google Scholar 

  115. J. Steinheimer, L. Pang, K. Zhou, V. Koch, J. Randrup, H. Stoecker, A machine learning study to identify spinodal clumping in high energy nuclear collisions. JHEP 12, 122 (2019)

    ADS  Google Scholar 

  116. L.-G. Pang, K. Zhou, X.-N. Wang, Interpretable deep learning for nuclear deformation in heavy ion collisions, (2019), arXiv:1906.06429 [nucl-th]

  117. H. Huang, B. Xiao, H. Xiong, W. Zeming, M. Yadong, H. Song, Applications of deep learning to relativistic hydrodynamics. Nucl. Phys. A 982, 927–930 (2019)

    ADS  Google Scholar 

  118. A.A. Esfahani et al., Cyclotron radiation emission spectroscopy signal classification with machine learning in Project 8. New J. Phys. 22, 033004 (2020)

    ADS  Google Scholar 

  119. J. Renner et al., Background rejection in NEXT using deep neural networks. J. Instrum. 12, T01004–T01004 (2017). https://doi.org/10.1088/1748-0221/12/01/t01004

    Article  Google Scholar 

  120. V.  Sobes, M.  Grosskopf, K.  Wendt, D.  Brown, M. S. Smith, P.  Talou, WANDA: AI/ML for nuclear data. summary of the session on AI/ML at the workshop on applied nuclear data activities 2020, March 3–5, 2020, ORNL/TM-2020/1535. https://conferences.lbl.gov/event/292/

  121. E. Phiala Shanahan, D. Trewartha, W. Detmold, Machine learning action parameters in lattice quantum chromodynamics. Phys. Rev. D 97, 094506 (2018)

  122. L. Kades, J. M. Pawlowski, A. Rothkopf, M. Scherzer, J. M. Urban, S. J. Wetzel, N. Wink, F. Ziegler, Spectral Reconstruction with Deep Neural Networks(2019) arXiv:1905.04305 [physics.comp-ph]

  123. J. Karpie, K. Orginos, A. Rothkopf, S. Zafeiropoulos, Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks. JHEP 04, 057 (2019), arXiv:1901.05408

  124. R. Zhang, Z. Fan, R. Li, H.-W. Lin, B. Yoon, Machine-learning prediction for quasiparton distribution function matrix elements. Phys. Rev. D 101, 034516 (2020)

    ADS  Google Scholar 

  125. S. Lidia, R. Carr, “Faster magnet sorting with a threshold acceptance algorithm. Rev. Sci. Instrum. 66, 1865–1867 (1995)

    ADS  Google Scholar 

  126. O. Chubar, O. Rudenko, C. Benabderrahmane, O. Marcouille, J.M. Filhol, M.E. Couprie, Application of genetic algorithms to sorting, swapping and shimming of the soleil undulator magnets. AIP Conf. Proc. 879, 359–362 (2007). https://doi.org/10.1063/1.2436074

    Article  ADS  Google Scholar 

  127. W.J. Corbett, B. Pong, M. Lee, V. Ziemann, Optimum steering of photon beamlines in SPEAR. Proceedings of International Conference on Particle Accelerators 1, 1483–1484 (1993)

    Google Scholar 

  128. I.V. Bazarov, C.K. Sinclair, Multivariate optimization of a high brightness dc gun photoinjector. Phys. Rev. ST Accel. Beams 8, 034202 (2005)

    ADS  Google Scholar 

  129. W. Gao, L. Wang, W. Li, Simultaneous optimization of beam emittance and dynamic aperture for electron storage ring using genetic algorithm. Phys. Rev. ST Accel. Beams 14, 094001 (2011)

    ADS  Google Scholar 

  130. A. Hofler, B. Terzić, M. Kramer, A. Zvezdin, V. Morozov, Y. vRoblin, Fanglei Lin, Colin Jarvis, “Innovative applications of genetic algorithms to problems in accelerator physics. Phys. Rev. ST Accel. Beams 16, 010101 (2013)

  131. A.L. Edelen, S.G. Biedron, B.E. yucChase, D. Edstrom, S.V. Milton, P. Stabile, “Neural networks for modeling and control of particle accelerators. IEEE Trans. Nucl. Sci. 63, 878–897 (2016)

  132. C. Emma, A. Edelen, M.J. Hogan, B. O’Shea, G. White, V. Yakimenko, “Machine learning-based longitudinal phase space prediction of particle accelerators. Phys. Rev. Accel. Beams 21, 112802 (2018)

    ADS  Google Scholar 

  133. A. Scheinker, D. Bohler, Sergey Tomin, Raimund Kammering, Igor Zagorodnov, Holger Schlarb, Matthias Scholz, Bolko Beutner, Winfried Decking, “Model-independent tuning for maximizing free electron laser pulse energy. Phys. Rev. Accel. Beams 22, 082802 (2019)

    ADS  Google Scholar 

  134. “Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence” ( 2019)

  135. “ASCR Workshop on In Situ Data Management: Enabling Scientific Discovery from Diverse Data Sources”, (2019)

  136. “Data and Models: A Framework for Advancing AI in Science”,(2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Boehnlein.

Additional information

Communicated by Ulf Meissner

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report is an outcome of the workshop AI for Nuclear Physics held at Thomas Jefferson National Accelerator Facility on March 4–6, 2020. The workshop brought together 184 scientists to explore opportunities for Nuclear Physics in the area of Artificial Intelligence. The workshop consisted of plenary talks, as well as six working groups.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. Participation of students and early career professionals was supported by NSF, Division of Physics, under the Grant ‘Artificial Intelligence (AI) Workshop in Nuclear Physics,’ Award Number 2017170. Support for the Hackathon was provided by the University of Virginia School of Data Sciences and by Amazon Web Services.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedaque, P., Boehnlein, A., Cromaz, M. et al. A.I. for nuclear physics. Eur. Phys. J. A 57, 100 (2021). https://doi.org/10.1140/epja/s10050-020-00290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00290-x

Navigation