Skip to main content
Log in

Confronting gravitational-wave observations with modern nuclear physics constraints

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Multi-messenger observations of neutron star (NS) mergers have the potential to revolutionize nuclear astrophysics. They will improve our understanding of nucleosynthesis, provide insights about the equation of state (EOS) of strongly interacting matter at high densities, and enable tests of the theory of gravity and of dark matter. Here, we focus on the EOS, where both gravitational waves (GWs) from neutron-star mergers and X-ray observations from space-based detectors such as NICER will provide more stringent constraints on the structure of neutron stars. Furthermore, recent advances in nuclear theory have enabled reliable calculations of the EOS at low densities using effective field theory based Hamiltonians and advanced techniques to solve the quantum many-body problem. In this paper, we address how the first observation of GWs from GW170817 can be combined with modern calculations of the EOS to extract useful insights about the EOS of matter encountered inside neutron stars. We analyze the impact of various uncertainties, the role of phase transitions in the NS core, and discuss how future observations will improve our understanding of dense matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Virgo, LIGO Scientific Collaborations (B. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017) arXiv:1710.05832

    ADS  Google Scholar 

  2. GROND Collaboration, SALT Group, OzGrav Collaboration, DFN Collaboration, INTEGRAL Collaboration, Virgo Collaboration, Insight-Hxmt Collaboration, MAXI Team, Fermi-LAT Collaboration, J-GEM Collaboration, RATIR Collaboration, IceCube Collaboration, CAASTRO Collaboration, LWA Collaboration, ePESSTO Collaboration, GRAWITA Collaboration, RIMAS Collaboration, SKA South Africa/MeerKAT Collaboration, H.E.S.S. Collaboration, 1M2H Team, IKI-GW Follow-up Collaboration, Fermi GBM Collaboration, Pi of Sky Collaboration, DWF (Deeper Wider Faster Program) Collaboration, Dark Energy Survey Collaboration, MASTER Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, Swift Collaboration, Pierre Auger Collaboration, ASKAP Collaboration, VINROUGE Collaboration, JAGWAR Collaboration, Chandra Team at McGill University, TTU-NRAO Collaboration, GROWTH Collaboration, AGILE Team, MWA Collaboration, ATCA Collaboration, AST3 Collaboration, TOROS Collaboration, Pan-STARRS Collaboration, NuSTAR Collaboration, ATLAS Telescopes Collaboration, BOOTES Collaboration, CaltechNRAO Collaboration, LIGO Scientific Collaboration, High Time Resolution Universe Survey Collaboration, Nordic Optical Telescope Collaboration, Las Cumbres Observatory Group Collaboration, TZAC Consortium Collaboration, LOFAR Collaboration, IPN Collaboration, DLT40 Collaboration, Texas Tech University, HAWC Collaboration, ANTARES Collaboration, KU Collaboration, Dark Energy Camera GW-EM Collaboration, CALET Collaboration, Euro VLBI Team, ALMA Collaboration (B.P. Abbott et al.), Astrophys. J. 848, L12 (2017) arXiv:1710.05833

    Article  ADS  Google Scholar 

  3. Virgo Collaboration, Fermi-GBM Collaboration, INTEGRAL Collaboration, LIGO Scientific Collaboration (B.P. Abbott et al.), Astrophys. J. 848, L13 (2017) arXiv:1710.05834

    Article  ADS  Google Scholar 

  4. LIGO Scientific, Virgo Collaboration (B.P. Abbott et al.), Phys. Rev. X 9, 011001 (2019) arXiv:1805.11579

    Google Scholar 

  5. V. Savchenko et al., Astrophys. J. 848, L15 (2017) arXiv:1710.05449

    Article  ADS  Google Scholar 

  6. M.R. Drout et al., Science 358, 1570 (2017) arXiv:1710.05443

    Article  ADS  Google Scholar 

  7. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120, 172703 (2018) arXiv:1711.02644

    Article  ADS  Google Scholar 

  8. F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018) arXiv:1711.06615

    Article  ADS  Google Scholar 

  9. E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, Phys. Rev. Lett. 120, 261103 (2018) arXiv:1803.00549

    Article  ADS  Google Scholar 

  10. Y. Lim, J.W. Holt, Phys. Rev. Lett. 121, 062701 (2018) arXiv:1803.02803

    Article  ADS  Google Scholar 

  11. I. Tews, J. Margueron, S. Reddy, Phys. Rev. C 98, 045804 (2018) arXiv:1804.02783

    Article  ADS  Google Scholar 

  12. A. Bauswein, O. Just, H.T. Janka, N. Stergioulas, Astrophys. J. 850, L34 (2017) arXiv:1710.06843

    Article  ADS  Google Scholar 

  13. J.E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K.E. Schmidt, A. Schwenk, Phys. Rev. Lett. 116, 062501 (2016)

    Article  ADS  Google Scholar 

  14. I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astrophys. J. 860, 149 (2018) arXiv:1801.01923

    Article  ADS  Google Scholar 

  15. J.A. Melendez, S. Wesolowski, R.J. Furnstahl, Phys. Rev. C 96, 024003 (2017) arXiv:1704.03308

    Article  ADS  Google Scholar 

  16. M. Alford, M. Braby, M.W. Paris, S. Reddy, Astrophys. J. 629, 969 (2005) nucl-th/0411016

    Article  ADS  Google Scholar 

  17. I. Tews, J.M. Lattimer, A. Ohnishi, E.E. Kolomeitsev, Astrophys. J. 848, 105 (2017) arXiv:1611.07133

    Article  ADS  Google Scholar 

  18. K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010) arXiv:0911.0483

    Article  ADS  Google Scholar 

  19. C. Drischler, A. Carbone, K. Hebeler, A. Schwenk, Phys. Rev. C 94, 054307 (2016) arXiv:1608.05615

    Article  ADS  Google Scholar 

  20. J.W. Holt, N. Kaiser, Phys. Rev. C 95, 034326 (2017) arXiv:1612.04309

    Article  ADS  Google Scholar 

  21. G. Hagen, T. Papenbrock, A. Ekström, K.A. Wendt, G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, C.J. Horowitz, Phys. Rev. C 89, 014319 (2014) arXiv:1311.2925

    Article  ADS  Google Scholar 

  22. S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801 (2012) arXiv:1101.1921

    Article  ADS  Google Scholar 

  23. A. Carbone, A. Rios, A. Polls, Phys. Rev. C 90, 054322 (2014) arXiv:1408.0717

    Article  ADS  Google Scholar 

  24. S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015) arXiv:1501.05675

    Article  ADS  Google Scholar 

  25. K. Hebeler, J.D. Holt, J. Menendez, A. Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015) arXiv:1508.06893

    Article  ADS  Google Scholar 

  26. J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, arXiv:1412.3081 (2014)

  27. M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, E. Lusk, L.E. Marcucci, S.C. Pieper, R. Schiavilla, M. Viviani et al., Phys. Rev. Lett. 120, 052503 (2017)

    Article  ADS  Google Scholar 

  28. D. Lonardoni, J. Carlson, S. Gandolfi, J.E. Lynn, K.E. Schmidt, A. Schwenk, X. Wang, Phys. Rev. Lett. 120, 122502 (2018) arXiv:1709.09143

    Article  ADS  Google Scholar 

  29. J. Carlson, S. Reddy, Phys. Rev. Lett. 100, 150403 (2008)

    Article  ADS  Google Scholar 

  30. S. NascimbÃ, Nature 463, 1057 (2010)

    Article  ADS  Google Scholar 

  31. N. Navon, S. Nascimbene, F. Chevy, C. Salomon, Science 328, 729 (2010)

    Article  ADS  Google Scholar 

  32. M.W. Zwierlein, Superfluidity in Ultracold Atomic Fermi Gases, Vol. 2 (Oxford University Press, 2014)

  33. D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015) arXiv:1407.4448

    Article  ADS  Google Scholar 

  34. S. Gandolfi, H.W. Hammer, P. Klos, J.E. Lynn, A. Schwenk, Phys. Rev. Lett. 118, 232501 (2017) arXiv:1612.01502

    Article  ADS  Google Scholar 

  35. E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  36. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)

    Article  ADS  Google Scholar 

  37. A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013)

    Article  ADS  Google Scholar 

  38. A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. C 90, 054323 (2014) arXiv:1406.0454

    Article  ADS  Google Scholar 

  39. I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, Phys. Rev. C 93, 024305 (2016) arXiv:1507.05561

    Article  ADS  Google Scholar 

  40. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025805 (2018)

    Article  ADS  Google Scholar 

  41. J.E. Lynn, I. Tews, S. Gandolfi, A. Lovato, arXiv:1901.04868 (2019)

  42. R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015) arXiv:1506.01343

    Article  ADS  Google Scholar 

  43. E. Epelbaum, H. Krebs, U.G. Meißner, Eur. Phys. J. A 51, 53 (2015) arXiv:1412.0142

    Article  ADS  Google Scholar 

  44. L. Huth, I. Tews, J.E. Lynn, A. Schwenk, Phys. Rev. C 96, 054003 (2017) arXiv:1708.03194

    Article  ADS  Google Scholar 

  45. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025806 (2018)

    Article  ADS  Google Scholar 

  46. I. Tews, Phys. Rev. C 95, 015803 (2017) arXiv:1607.06998

    Article  ADS  Google Scholar 

  47. M.G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013) arXiv:1302.4732

    Article  ADS  Google Scholar 

  48. S.K. Greif, G. Raaijmakers, K. Hebeler, A. Schwenk, A.L. Watts, arXiv:1812.08188 (2018)

  49. J.S. Read, B.D. Lackey, B.J. Owen, J.L. Friedman, Phys. Rev. D 79, 124032 (2009) arXiv:0812.2163

    Article  ADS  Google Scholar 

  50. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013)

    Article  ADS  Google Scholar 

  51. C.A. Raithel, F. Ozel, D. Psaltis, Astrophys. J. 831, 44 (2016)

    Article  ADS  Google Scholar 

  52. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)

    ADS  Google Scholar 

  53. J. Antoniadis, P.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  54. E. Fonseca et al., Astrophys. J. 832, 167 (2016)

    Article  ADS  Google Scholar 

  55. K. Gendreau, Z. Arzoumanian, T. Okaajima, Proc. SPIE 8443, 844313 (2012)

    Article  Google Scholar 

  56. C.E. Rhoades, R. Ruffini, Phys. Rev. Lett. 32, 324 (1974)

    Article  ADS  Google Scholar 

  57. V. Kalogera, G. Baym, Astrophys. J. 470, L61 (1996)

    Article  ADS  Google Scholar 

  58. V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D.B. Blaschke, A. Sedrakian, Phys. Rev. D 97, 084038 (2018) arXiv:1712.00451

    Article  ADS  Google Scholar 

  59. M.G. Alford, G.F. Burgio, S. Han, G. Taranto, D. Zappalà, Phys. Rev. D 92, 083002 (2015) arXiv:1501.07902

    Article  ADS  Google Scholar 

  60. S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018) arXiv:1804.08583

    Article  ADS  Google Scholar 

  61. B. Margalit, B.D. Metzger, Astrophys. J. 850, L19 (2017)

    Article  ADS  Google Scholar 

  62. E.E. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008)

    Article  ADS  Google Scholar 

  63. T. Damour, A. Nagar, Phys. Rev. D 80, 084035 (2009)

    Article  ADS  Google Scholar 

  64. C.C. Moustakidis, T. Gaitanos, C. Margaritis, G.A. Lalazissis, Phys. Rev. C 95, 045801 (2017) 95

    Article  ADS  Google Scholar 

  65. Virgo, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  66. (Virgo, LIGO Scientific Collaboration) B.P. Abbott, arXiv:1805.11581 (2018)

  67. L. Lindblom, Phys. Rev. D 82, 103011 (2010) arXiv:1009.0738

    Article  ADS  Google Scholar 

  68. A. Kurkela, P. Romatschke, A. Vuorinen, Phys. Rev. D 81, 105021 (2010) arXiv:0912.1856

    Article  ADS  Google Scholar 

  69. D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J. 852, L29 (2018)

    Article  ADS  Google Scholar 

  70. D. Radice, L. Dai, arXiv:1810.12917 (2018)

  71. M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Tanaka, Phys. Rev. D 96, 123012 (2017)

    Article  ADS  Google Scholar 

  72. L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. 852, L25 (2018)

    Article  ADS  Google Scholar 

  73. A.L. Watts et al., Sci. China Phys. Mech. Astron. 62, 29503 (2019)

    Article  ADS  Google Scholar 

  74. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tews.

Additional information

Communicated by D. Blaschke

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tews, I., Margueron, J. & Reddy, S. Confronting gravitational-wave observations with modern nuclear physics constraints. Eur. Phys. J. A 55, 97 (2019). https://doi.org/10.1140/epja/i2019-12774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12774-6

Navigation