Skip to main content

Advertisement

Log in

Radiative 3He(\(\alpha , \gamma\))7Be reaction in halo effective field theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this work we study the radiative capture of 3He on 4He within the halo effective field theory (EFT) framework. At leading order the capture amplitude comprises the initial state s-wave strong and Coulomb interactions summed to all orders. At the same order in the expansion, leading two-body currents contribute as well. We find delicate cancelations between the various contributions, and the two-body current contributions can be replaced by appropriately enhancing the asymptotic normalizations of the 7Be ground and first excited state wave functions. The next-to-leading order corrections come from the s-wave shape parameter and the pure Coulomb d-wave initial state interactions. We fit the EFT parameters to available scattering data and most recent capture data. Our zero-energy astrophysical S-factor estimate, \(S_{34}\sim 0.55\) keV b, is consistent within error bars with the average in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.H. Cyburt, B. Davids, Phys. Rev. C 78, 064614 (2008)

    Article  ADS  Google Scholar 

  2. J.N. Bahcall, R.K. Ulrich, Rev. Mod. Phys. 60, 297 (1988)

    Article  ADS  Google Scholar 

  3. E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)

    Article  ADS  Google Scholar 

  4. Super-Kamiokande Collaboration (S. Fukuda et al.), Phys. Rev. Lett. 86, 5651 (2001)

    Article  Google Scholar 

  5. SNO Collaboration (B. Aharmim et al.), Phys. Rev. C 75, 045502 (2007)

    Article  Google Scholar 

  6. J.N. Bahcall, A.M. Serenelli, Astrophys. J. 626, 530 (2005)

    Article  ADS  Google Scholar 

  7. J.N. Bahcall, A.M. Serenelli, S. Basu, Astrophys. J. 621, L85 (2005)

    Article  ADS  Google Scholar 

  8. Borexino Collaboration (C. Arpesella et al.), Phys. Rev. Lett. 101, 091302 (2008)

    Article  Google Scholar 

  9. R.H. Cyburt, Phys. Rev. D 70, 023505 (2004)

    Article  ADS  Google Scholar 

  10. B.D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47 (2011)

    Article  ADS  Google Scholar 

  11. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  12. C.A. Bertulani, H.W. Hammer, U. Van Kolck, Nucl. Phys. A 712, 37 (2002)

    Article  ADS  Google Scholar 

  13. P.F. Bedaque, H.W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003)

    Article  ADS  Google Scholar 

  14. R. Higa, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171 (2008)

    Article  ADS  Google Scholar 

  15. B.A. Gelman, Phys. Rev. C 80, 034005 (2009)

    Article  ADS  Google Scholar 

  16. D.L. Canham, H.-W. Hammer, Eur. Phys. J. A 37, 367 (2008) 0807.3258

    Article  ADS  Google Scholar 

  17. D.L. Canham, H.-W. Hammer, Nucl. Phys. A 836, 275 (2010) 0911.3238

    Article  ADS  Google Scholar 

  18. V. Lensky, M.C. Birse, Eur. Phys. J. A 47, 142 (2011)

    Article  ADS  Google Scholar 

  19. H.-W. Hammer, D. Phillips, Nucl. Phys. A 865, 17 (2011)

    Article  ADS  Google Scholar 

  20. G. Rupak, R. Higa, Phys. Rev. Lett. 106, 222501 (2011)

    Article  ADS  Google Scholar 

  21. L. Fernando, R. Higa, G. Rupak, Eur. Phys. J. A 48, 24 (2012)

    Article  ADS  Google Scholar 

  22. G. Rupak, L. Fernando, A. Vaghani, Phys. Rev. C 86, 044608 (2012)

    Article  ADS  Google Scholar 

  23. X. Zhang, K.M. Nollett, D.R. Phillips, Phys. Rev. C 89, 024613 (2014)

    Article  ADS  Google Scholar 

  24. X. Zhang, K.M. Nollett, D.R. Phillips, Phys. Rev. C 89, 051602 (2014)

    Article  ADS  Google Scholar 

  25. E. Ryberg, F. Christian, H.W. Hammer, L. Platter, Eur. Phys. J. A 50, 170 (2014)

    Article  ADS  Google Scholar 

  26. X. Zhang, K.M. Nollett, D.R. Phillips, Phys. Lett. B 751, 535 (2015)

    Article  ADS  Google Scholar 

  27. G. Rupak, Int. J. Mod. Phys. E 25, 1641004 (2016)

    Article  ADS  Google Scholar 

  28. TUNL Nuclear Data Evaluation Project, Energy Level Diagram, ${}^{7}$Be (2002), available at http://www.tunl.duke.edu/nucldata/figures/07figs/07_04_2002.pdf

  29. W.R. Boykin, S.D. Baker, D.M. Hardy, Nucl. Phys. A 195, 241 (1972)

    Article  ADS  Google Scholar 

  30. S.R. Beane, M.J. Savage, Nucl. Phys. A 694, 511 (2001)

    Article  ADS  Google Scholar 

  31. J. Carlson, D.O. Riska, R. Schiavilla, R.B. Wiringa, Phys. Rev. C 42, 830 (1990)

    Article  ADS  Google Scholar 

  32. J. Carlson, D.O. Riska, R. Schiavilla, R.B. Wiringa, Phys. Rev. C 44, 619 (1991)

    Article  ADS  Google Scholar 

  33. H. Sadeghi, R. Ghasemi, H. Khalili, Chin. Phys. C 38, 084101 (2014) Astrophys. Space Sci. 347

    Article  ADS  Google Scholar 

  34. M. Abramowitz, I.A. Stegun (Editors), Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965)

  35. I.J. Thompson, NIST Digital Library of Mathematical Functions, Chapter 33: Coulomb Functions, http://dlmf.nist.gov/33

  36. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998)

    Article  ADS  Google Scholar 

  37. R.J. Spieger, T.A. Tombrello, Phys. Rev. 163, 964 (1967)

    Article  ADS  Google Scholar 

  38. H. Constantini et al., Nucl. Phys. A 814, 144 (2008)

    Article  ADS  Google Scholar 

  39. T.A.D. Brown et al., Phys. Rev. C 76, 055801 (2007)

    Article  ADS  Google Scholar 

  40. B.S. Nara Singh, M. Hass, Y. Nir-El, G. Haquin, Phys. Rev. Lett. 93, 262503 (2004)

    Article  ADS  Google Scholar 

  41. A. Di Leva et al., Phys. Rev. Lett. 102, 232502 (2009)

    Article  ADS  Google Scholar 

  42. A. Kontos, E. Uberseder, R. deBoer, J. Grres, C. Akers, A. Best, M. Couder, M. Wiescher, Phys. Rev. C 87, 065804 (2013) 88

    Article  ADS  Google Scholar 

  43. T. Neff, Phys. Rev. Lett. 106, 042502 (2011)

    Article  ADS  Google Scholar 

  44. J. Dohet-Eraly et al., Phys. Lett. B 757, 430 (2016)

    Article  ADS  Google Scholar 

  45. S.B. Igamov, K.I. Tursunmakhatov, R. Yarmukhamedov, Phys. Rev. C 85, 045807 (2012)

    Article  ADS  Google Scholar 

  46. B. Davids, Elastic scattering of ${}^{3}He+\alpha$ with SONIK, private communication (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Higa.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higa, R., Rupak, G. & Vaghani, A. Radiative 3He(\(\alpha , \gamma\))7Be reaction in halo effective field theory. Eur. Phys. J. A 54, 89 (2018). https://doi.org/10.1140/epja/i2018-12486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12486-5

Navigation