Skip to main content
Log in

Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a \( \gamma\)-ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Eberth, J. Simpson, Prog. Part. Nucl. Phys. 60, 283 (2008)

    Article  ADS  Google Scholar 

  2. R. Venturelli, D. Bazzacco, Adaptive Grid Search as Pulse Shape Analysis Algorithm for $\gamma$-Tracking and Results, LNL Annual Report (2004)

  3. Th. Kröll, D. Bazzacco, Nucl. Instrum. Methods A 565, 691 (2006)

    Article  ADS  Google Scholar 

  4. A. Olariu et al., Nucl. Sci. IEEE Trans. 53, 1028 (2006)

    Article  ADS  Google Scholar 

  5. M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 131 (2011)

    Article  ADS  Google Scholar 

  6. S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)

    Article  ADS  Google Scholar 

  7. S. Paschalis et al., Nucl. Instrum. Methods A 709, 44 (2013)

    Article  ADS  Google Scholar 

  8. L. Nelson et al., Nucl. Instrum. Methods A 573, 153 (2006)

    Article  ADS  Google Scholar 

  9. A.J. Boston et al., Nucl. Instrum. Methods A 604, 48 (2009)

    Article  ADS  Google Scholar 

  10. T.M.H. Ha et al., Nucl. Instrum. Methods A 697, 123 (2013)

    Article  ADS  Google Scholar 

  11. C. Domingo-Pardo et al., Nucl. Instrum. Methods A 643, 79 (2011)

    Article  ADS  Google Scholar 

  12. N. Goel et al., Nucl. Instrum. Methods A 652, 591 (2011)

    Article  ADS  Google Scholar 

  13. F.C.L. Crespi et al., Nucl. Instrum. Methods A 593, 440 (2008)

    Article  ADS  Google Scholar 

  14. P. Désesquelles, Nucl. Instrum. Methods A 654, 324 (2011)

    Article  ADS  Google Scholar 

  15. B. Bruyneel, P. Reiter, G. Pascovici, Nucl. Instrum. Methods A 569, 774 (2006)

    Article  ADS  Google Scholar 

  16. A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, J. Eberth, D. Lersch, G. Pascovici, P. Reiter, H.-G. Thomas, Nucl. Instrum. Methods A 618, 223 (2010)

    Article  ADS  Google Scholar 

  17. J. van der Marel, B. Cederwall, Nucl. Instrum. Methods A 437, 538 (1999)

    Article  ADS  Google Scholar 

  18. G.J. Schmid et al., Nucl. Instrum. Methods A 430, 6 (1999)

    Google Scholar 

  19. E. Farnea, F. Recchia, D. Bazzacco, Th. Kröll, Zs. Podolyak, B. Quintana, A. Gadea, Nucl. Instrum. Methods A 621, 331 (2010)

    Article  ADS  Google Scholar 

  20. P.-A. Söderström et al., Nucl. Instrum. Methods A 638, 96 (2011)

    Article  ADS  Google Scholar 

  21. P. Medina, http://www.iphc.cnrs.fr/-MGS-.html

  22. I. Mateu, P. Medina, J.P. Roques, E. Jourdain, Nucl. Instrum. Methods A 735, 574 (2014)

    Article  ADS  Google Scholar 

  23. M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 132 (2011)

    Article  ADS  Google Scholar 

  24. G. Lutz, Semiconductor Radiation Detectors, first edition (Springer, Berlin-Heidelberg-New York, 1999)

  25. http://www.silvaco.fr/

  26. http://www.synopsys.com/

  27. National Institute of Standards and Technology, Stopping-power and range tables for electrons, protons, and helium ions (2009)

  28. G. Pausch, W. Bohne, D. Hilscher, Nucl. Instrum. Methods A 337, 573 (1994)

    Article  ADS  Google Scholar 

  29. Glenn F. Knoll, Radiation Detection and Measurement, third edition (John Wiley & Sons, 2000)

  30. C. Jacoboni, F. Nava, C. Canali, G. Ottaviani, Phys. Rev. B 24, 1014 (1981)

    Article  ADS  Google Scholar 

  31. S. Aydin, Effective size of segmentation lines of an AGATA crystal, LNL Annual Report (2007)

  32. E.L. Hull et al., Nucl. Instrum. Methods A 364, 488 (1995)

    ADS  Google Scholar 

  33. P. Mullowney et al., Nucl. Instrum. Methods A 662, 33 (2012)

    Article  ADS  Google Scholar 

  34. B. Bruyneel, Determination of the Crystal Orientation of the AGATA Detectors, LNL Annual Report (2010)

  35. L. Mihailescu, W. Gast, R.M. Lieder, H. Brands, H. Jäger, Nucl. Instrum. Methods A 447, 350 (2000)

    Article  ADS  Google Scholar 

  36. B. Bruyneel, P. Reiter, G. Pascovici, Nucl. Instrum. Methods A 569, 764 (2006)

    Article  ADS  Google Scholar 

  37. W. Blum, W. Riegler, W. Rolandi, Particle Detection with Drift Chambers, first edition (Springer, Berlin, Heidelberg, 2008)

  38. E. Gatti, G. Padovini, V. Radeka, Nucl. Instrum. Methods 193, 651 (1982)

    Article  ADS  Google Scholar 

  39. W. Riegler, Nucl. Instrum. Methods A 535, 287 (2004)

    Article  ADS  Google Scholar 

  40. B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, G. Pascovici, N. Warr, D. Weisshaar, Nucl. Instrum. Methods A 599, 196 (2009)

    Article  ADS  Google Scholar 

  41. B. Bruyneel et al., Nucl. Instrum. Methods A 608, 99 (2009)

    Article  ADS  Google Scholar 

  42. B. Bruyneel, Pulse shape analysis with the AGATA demonstrator (Germanium Workshop Berkeley, 2010)

  43. B. Bruyneel, PhD thesis, Institut für Kernphysik der Universität zu Köln (2006)

  44. http://www.simion.com

  45. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, second edition (Cambridge University Press, 1992)

  46. http://www.ikp.uni-koeln.de/agata/

  47. B. Birkenbach, B. Bruyneel, G. Pascovici, J. Eberth, H. Hess, D. Lersch, P. Reiter, A. Wiens, Nucl. Instrum. Methods A 640, 176 (2011)

    Article  ADS  Google Scholar 

  48. B. Bruyneel, B. Birkenbach, P. Reiter, Nucl. Instrum. Methods A 641, 92 (2011)

    Article  ADS  Google Scholar 

  49. B. Birkenbach, Raumladungsverteilungen in hochsegmentierten HPGe-Detektoren, Diplomarbeit (2009)

  50. B. Birkenbach, Determination of the Space Charge Distributions in the AGATA Detectors, LNL Annual Report 2010 (2010) p. 68

  51. B. Bruyneel et al., Eur. Phys. J. A 49, 61 (2013)

    Article  ADS  Google Scholar 

  52. T. Beck, PhD thesis, Fachbereich Physik Johann Wolfgang Göthe-Universität in Frankfurt am Main (2007)

  53. F. Recchia et al., Nucl. Instrum. Methods A 604, 555 (2009)

    Article  ADS  Google Scholar 

  54. F. Recchia et al., Nucl. Instrum. Methods A 604, 60 (2009)

    Article  ADS  Google Scholar 

  55. S. Klupp, Master’s thesis, Technical University Munich (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Birkenbach.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruyneel, B., Birkenbach, B. & Reiter, P. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library. Eur. Phys. J. A 52, 70 (2016). https://doi.org/10.1140/epja/i2016-16070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16070-9

Keywords

Navigation