Skip to main content
Log in

The FAZIA project in Europe: R&D phase

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The goal of the FAZIA Collaboration is the design of a new-generation 4π detector array for heavy-ion collisions with radioactive beams. This article summarizes the main results of the R&D phase, devoted to the search for significant improvements of the techniques for charge and mass identification of reaction products. This was obtained by means of a systematic study of the basic detection module, consisting of two transmission-mounted silicon detectors followed by a CsI(Tl) scintillator. Significant improvements in ΔE-E and pulse-shape techniques were obtained by controlling the doping homogeneity and the cutting angles of silicon and by putting severe constraints on thickness uniformity. Purposely designed digital electronics contributed to identification quality. The issue of possible degradation related to radiation damage of silicon was also addressed. The experimental activity was accompanied by studies on the physics governing signal evolution in silicon. The good identification quality obtained with the prototypes during the R&D phase, allowed us to investigate also some aspects of isospin physics, namely isospin transport and odd-even staggering. Now, after the conclusion of the R&D period, the FAZIA Collaboration has entered the demonstrator phase, with the aim of verifying the applicability of the devised solutions for the realization of a larger-scale experimental set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Paush et al., IEEE Trans. Nucl. Sci. 44, 1040 (1997).

    Article  ADS  Google Scholar 

  2. M. Mutterer et al., IEEE Trans. Nucl. Sci. 47, 756 (2000).

    Article  ADS  Google Scholar 

  3. C.A.J. Ammerlaan et al., Nucl. Instrum. Methods A 22, 189 (1963).

    Article  Google Scholar 

  4. J.B.A. England et al., Nucl. Instrum. Methods A 280, 291 (1989).

    Article  ADS  Google Scholar 

  5. G. Paush et al., Nucl. Instrum. Methods A 337, 337 (1994).

    Google Scholar 

  6. G. Paush et al., IEEE Trans. Nucl. Sci. 43, 1097 (1996).

    Article  ADS  Google Scholar 

  7. J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995).

    Article  ADS  Google Scholar 

  8. A. Pagano et al., Nucl. Phys. A 734, 504 (2004).

    Article  ADS  Google Scholar 

  9. M. Bruno et al., Eur. Phys. J. A 49, 128 (2013).

    Article  ADS  Google Scholar 

  10. M. Pârlog, in Proceedings of the IWM 2003, International workshop on multifragmentation and related topics (GANIL, Caen, 2004).

  11. H. Hamrita et al., Nucl. Instrum. Methods A 531, 607 (2004).

    Article  ADS  Google Scholar 

  12. L. Bardelli, in Proceedings of the International Workshop on Multifragmentation IWM2005, edited by R. Bougault, A. Pagano, S. Pirrone, M.-F. Rivet, F. Rizzo (SIF, Bologna, 2005) ISBN 88-7438-029-1.

  13. M. Pârlog et al., Nucl. Instrum. Methods A 613, 290 (2010).

    Article  ADS  Google Scholar 

  14. Z. Sosin et al., Nucl. Instrum. Methods A 693, 170 (2012).

    Article  ADS  Google Scholar 

  15. S. Carboni et al., Nucl. Instrum. Methods A 664, 251 (2012).

    Article  ADS  Google Scholar 

  16. W. von Ammon et al., Nucl. Instrum. Methods B 63, 95 (1992).

    Article  ADS  Google Scholar 

  17. G. Pasquali et al., Nucl. Instrum. Methods A 570, 126 (2007).

    Article  ADS  Google Scholar 

  18. L. Bardelli et al., Nucl. Instrum. Methods A 654, 272 (2011).

    Article  ADS  Google Scholar 

  19. L. Bardelli et al., Nucl. Instrum. Methods A 605, 353 (2009).

    Article  ADS  Google Scholar 

  20. L. Bardelli et al., Nucl. Instrum. Methods A 602, 501 (2009).

    Article  ADS  Google Scholar 

  21. S. Barlini, et al., Nucl. Instrum. Methods A 600, 644 (2009).

    Article  ADS  Google Scholar 

  22. N. Le Neindre et al., Nucl. Instrum. Methods A 701, 145 (2013).

    Article  ADS  Google Scholar 

  23. F.Z. Henari et al., Nucl. Instrum. Methods A 288, 439 (1990).

    Article  ADS  Google Scholar 

  24. H.A. Rijken et al., IEEE Trans. Nucl. Sci. 40, 349 (1993).

    Article  ADS  Google Scholar 

  25. L. Bardelli et al., Nucl. Instrum. Methods A 521, 480 (2004).

    Article  ADS  Google Scholar 

  26. W. Seibt Nucl. Instrum. Methods A1133171973).

    Article  Google Scholar 

  27. G. Paush et al., Nucl. Instrum. Methods A 365, 176 (1995).

    Article  ADS  Google Scholar 

  28. W.M. Gibson Phys. Rev. Lett.15 3601965.

    Article  Google Scholar 

  29. B.R. Appleton et al., Phys. Rev. 161, 330 (1967).

    Article  ADS  Google Scholar 

  30. J.J. Grob et al., Phys. Rev. B 11, 3273 (1975).

    Article  ADS  Google Scholar 

  31. A.A. Alexandrov et al., Nucl. Instrum. Methods A 312, 542 (1992).

    Article  ADS  Google Scholar 

  32. G. Poggi et al., Nucl. Instrum. Methods B 119, 375 (1996).

    Article  ADS  Google Scholar 

  33. L. Bardelli et al., Nucl. Instrum. Methods A 560, 517 (2006).

    Article  ADS  Google Scholar 

  34. R.A. Winyard et al., Nucl. Instrum. Methods 95, 141 (1971).

    Article  ADS  Google Scholar 

  35. R.J. Charity et al., Nucl. Phys. A 476, 516 (1988).

    Article  ADS  Google Scholar 

  36. S. Barlini et al., Nucl. Instrum. Methods A 707, 89 (2013).

    Article  ADS  Google Scholar 

  37. M. Alderighi et al., IEEE Trans. Nucl. Sci. 53, 279 (2006).

    Article  ADS  Google Scholar 

  38. A. Alberigi Quaranta et al., IEEE Trans. Nucl. Sci. 15, 373 (1968).

    Article  ADS  Google Scholar 

  39. I. Kano, Nucl. Instrum. Methods A 353, 93 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  40. H. Hamrita et al., Nucl. Instrum. Methods A 642, 59 (2011).

    Article  ADS  Google Scholar 

  41. G. Pasquali submitted to Eur. Phys. J. A, arXiv:1402.4943 [physics.ins-det].

  42. G. Pastore, Master Thesis, University of Florence (2013).

  43. G. Pasquali et al., Nucl. Instrum. Methods A 301, 101 (1991).

    Article  ADS  Google Scholar 

  44. G. Prete et al., Nucl. Instrum. Methods A 315, 109 (1992).

    Article  ADS  Google Scholar 

  45. G. Pasquali et al., Eur. Phys. J. A 48, 158 (2012).

    Article  ADS  Google Scholar 

  46. F. Hubert et al., At. Data Nucl. Data Tables 46, 1 (1990).

    Article  ADS  Google Scholar 

  47. Y. Blumenfeld et al., Nucl. Instrum. Methods A 421, 471 (1999).

    Article  ADS  Google Scholar 

  48. B. Davin et al., Nucl. Instrum. Methods A 473, 302 (2001).

    Article  ADS  Google Scholar 

  49. E. Pollaco et al., Eur. Phys. J. A 25, 287 (2005).

    Article  Google Scholar 

  50. M.S. Wallace et al., Nucl. Instrum. Methods A 583, 302 (2007).

    Article  ADS  Google Scholar 

  51. M. Labiche et al., Nucl. Instrum. Methods A 614, 439 (2010).

    Article  ADS  Google Scholar 

  52. G. Verde et al., J. Phys. Conf. Ser. 420, 012158 (2013).

    Article  ADS  Google Scholar 

  53. D. Torresi et al., Nucl. Instrum. Methods A 713, 11 (2013).

    Article  ADS  Google Scholar 

  54. B. Davin et al., Nucl. Instrum. Methods B 317, 661 (2013).

    Article  Google Scholar 

  55. G. Verde et al., Eur. Phys. J. A 30, 81 (2006).

    Article  ADS  Google Scholar 

  56. R. Charity et al., Phys. Rev. C 52, 3126 (1995).

    Article  ADS  Google Scholar 

  57. W. Tan et al., Phys. Rev. C 69, 061304 (2004).

    Article  ADS  Google Scholar 

  58. F. Grenier et al., Nucl. Phys. A 811, 126 (2008).

    Article  Google Scholar 

  59. S. Valdrè, Degree Thesis, University of Florence (2009).

  60. S. Barlini et al., Phys. Rev. C 87, 054607 (2013).

    Article  ADS  Google Scholar 

  61. S. Piantelli et al., Phys. Rev. C 88, 064607 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to R. Bougault.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Àngels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

The FAZIA Collaboration., Bougault, R., Poggi, G. et al. The FAZIA project in Europe: R&D phase. Eur. Phys. J. A 50, 47 (2014). https://doi.org/10.1140/epja/i2014-14047-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14047-4

Keywords

Navigation