Skip to main content
Log in

Membranes with rotating motors: Microvortex assemblies

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study collections of rotatory motors confined to 2-dimensional manifolds. The rotational motion induces a repulsive hydrodynamic interaction between motors leading to a non-trivial collective behavior. For high rotation speed, motors should arrange on a triangular lattice exhibiting crystalline order. At low speed, they form a disordered phase where diffusion is enhanced by velocity fluctuations. In confining geometries and under suitable boundary conditions, motor-generated flow might enhance left-right symmetry-breaking transport. All these effects should be experimentally observable for motors driven by external fields and for dipolar biological motors embedded into lipid membranes in a viscoelastic solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Alberts et al. , The Molecular Biology of the Cell, 4th edition (Garland, New York, 2002).

  2. M. Yoshida, E. Muneyuki, T. Hisabori, Nat. Rev. Mol. Cell. Biol. 2, 669 (2001).

    Article  MATH  Google Scholar 

  3. P.D. Boyer, Biochim. Biophys. Acta 1140, 215 (1993).

    Article  Google Scholar 

  4. J.P. Abrahams, A.G. Leslie, R. Lutter, J.E. Walker, Nature 370, 621 (1994).

    CAS  PubMed  Google Scholar 

  5. H. Noji, R. Yasuda, M. Yoshida, K. Kinosita jr., Nature 386, 299 (1997).

    CAS  PubMed  Google Scholar 

  6. J.R. Blake, Math. Meth. Appl. Sci. 24, 1469 (2001).

    MATH  Google Scholar 

  7. S. Nonaka et al. , Cell 95, 829 (1998).

    CAS  PubMed  Google Scholar 

  8. S. Gueron et al. , Proc. Natl. Acad. Sci. USA 94, 6001 (1997).

    Article  Google Scholar 

  9. S. Nonaka, H. Shiratori, Y. Saijoh, H. Hamada, Nature 418, 96 (2002).

    CAS  PubMed  Google Scholar 

  10. C.J. Tabin, K.J. Vogan, Genes Develop. 17, 1 (2003).

    Article  Google Scholar 

  11. J. McGrath et al. , Cell 114, 61 (2003).

    Google Scholar 

  12. H. Hamada, C. Meno, D. Watanabe, Y. Saijoh, Nat. Rev. Mol. Cell. Biol. 3, 103 (2001).

    Google Scholar 

  13. H. Liu et al. , Nat. Mater. 1, 173 (2002).

    Article  Google Scholar 

  14. R.K. Soong et al. , Science 290, 1555 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. J. Prost, R. Bruinsma, Europhys. Lett. 33, 321 (1996); see also A.W.C. Lau et al. , cond-mat/0309510 (2003).

    Article  Google Scholar 

  16. See, e.g., R. Lipowsky, Nature 349, 475 (1991) and U. Seifert, Adv. Phys. 46, 13 (1997) for reviews.

    CAS  PubMed  Google Scholar 

  17. J. Prost, J.-B. Manneville, R. Bruinsma, Eur. Phys. J. B 1, 465 (1998).

    Article  Google Scholar 

  18. S. Ramaswamy, J. Toner, J. Prost, Phys. Rev. Lett. 84, 3494 (2000).

    Article  Google Scholar 

  19. J.-B. Manneville, P. Bassereau, D. Lévy, J. Prost, Phys. Rev. Lett. 82, 4356 (1999).

    Article  Google Scholar 

  20. J.-B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Phys. Rev. E 64, 021908 (2001).

    Article  Google Scholar 

  21. S. Levin, R. Korenstein, Biophys. J. 60, 733 (1991).

    Google Scholar 

  22. S. Tuvia et al. , Proc. Natl. Acad. Sci. USA 94, 5045 (1997).

    Article  Google Scholar 

  23. F. Brochard, J.-F. Lennon, J. Phys. 36, 1035 (1975).

    Google Scholar 

  24. B.A. Grzybowski, H.A. Stone, G.M. Whitesides, Nature 405, 1033 (2000).

    Article  Google Scholar 

  25. B.A. Grzybowski, X. Jiang, H.A. Stone, G.M. Whitesides, Phys. Rev. E 64, 011603 (2001).

    Article  Google Scholar 

  26. P. Galajda, P. Ormos, Appl. Phys. Lett. 80, 4653 (2002).

    Article  Google Scholar 

  27. P. Lenz, J.-F. Joanny, F. Jülicher, J. Prost, Phys. Rev. Lett., 91, 108104 (2003).

    Google Scholar 

  28. R. Yasuda et al. , Cell 93, 1117 (1998).

    Article  Google Scholar 

  29. K. Kinosita jr., R. Yasuda, H. Noji, S. Ishiwata, M. Yoshida, Cell 93, 21 (1998).

    Article  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Hydrodynamics (Pergamon, New York, 1959).

  31. I.S. Gradshteyn, I.M. Rhyzik, Table of Integrals, Series and Products, 5th edition (Academic Press, San Diego, 1994).

  32. C. Barentin et al. , J. Fluid Mech. 397, 331 (1999).

    Article  MATH  Google Scholar 

  33. J.D. Jackson, Classical Electrodynamics (John Wiley, New York, 1999).

  34. E.B. Sonin, Rev. Mod. Phys. 59, 87 (1987).

    Article  MathSciNet  Google Scholar 

  35. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000).

  36. It should be emphasized that our analysis is only valid for N>2. For N=2, the motors simply rotate around their center of mass and their interaction has no radial component. However, the presence of additional motors gives rise to a radial interaction which, in general, is repulsive.

  37. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973).

    Google Scholar 

  38. S.I. Rubinow, J.B. Keller, J. Fluid Mech. 11, 447 (1961).

    MATH  Google Scholar 

  39. P. Brunn, Rheol. Acta 15, 163 (1976).

    MATH  Google Scholar 

  40. Following the discussion given in reference [20], a force quadrupole is the simplest force distribution which is consistent with the rotational motion of the motor and the requirement that no external force is present.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lenz.

Additional information

Received: 9 October 2003, Published online: 11 May 2004

PACS:

87.16.-b Subcellular structure and processes - 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 87.15.Kg Molecular interactions; membrane-protein interactions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenz, P., Joanny, JF., Jülicher, F. et al. Membranes with rotating motors: Microvortex assemblies. Eur. Phys. J. E 13, 379–390 (2004). https://doi.org/10.1140/epje/i2003-10083-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10083-9

Keywords

Navigation