Skip to main content
Log in

Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quadrature squeezed cylindrically polarized modes contain entanglement not only in the polarization and spatial electric field variables but also between these two degrees of freedom [C. Gabriel et al., Phys. Rev. Lett. 106, 060502 (2011)]. In this paper we present tools to generate and detect this entanglement. Experimentally we demonstrate the generation of quadrature squeezing in cylindrically polarized modes by mode transforming a squeezed Gaussian mode. Specifically, −1.2 dB ± 0.1 dB of amplitude squeezing are achieved in the radially and azimuthally polarized mode. Furthermore, theoretically it is shown how the entanglement contained within these modes can be measured and how strong the quantum correlations are, depending on the measurement scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Gabriel et al., Phys. Rev. Lett. 106, 060502 (2011)

    Article  ADS  Google Scholar 

  2. W.P. Bowen, N. Treps, R. Schnabel, P.K. Lam, Phys. Rev. Lett. 89, 253601 (2002)

    Article  ADS  Google Scholar 

  3. R. Dong, J. Heersink, J.I. Yoshikawa, O. Glöckl, U.L. Andersen, G. Leuchs, New J. Phys. 9, 410 (2007)

    Article  ADS  Google Scholar 

  4. V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Science 321, 544 (2008)

    Article  ADS  Google Scholar 

  5. K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J.F. Morizur, P.K. Lam, H.A. Bachor, Science 321, 541 (2008)

    Article  ADS  Google Scholar 

  6. Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng, Phys. Rev. Lett. 68, 3663 (1992)

    Article  ADS  Google Scholar 

  7. C. Silberhorn, P.K. Lam, O. Weiß, F. König, N. Korolkova, G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001)

    Article  ADS  Google Scholar 

  8. M. Zukowski, A. Zeilinger, Phys. Lett. A 155, 69 (1991)

    Article  ADS  Google Scholar 

  9. X.S. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, Phys. Rev. A 79, 042101 (2009)

    Article  ADS  Google Scholar 

  10. L. Neves, G. Lima, A. Delgado, C. Saavedra, Phys. Rev. A 80, 042322 (2009)

    Article  ADS  Google Scholar 

  11. J. Barreiro, T.C. Wei, P. Kwiat, Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  12. E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, F. Sciarrino, Phys. Rev. A 81, 052317 (2010)

    Article  ADS  Google Scholar 

  13. R. Raussendorf, D. Browne, H. Briegel, Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  14. M.A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004)

    Article  ADS  Google Scholar 

  15. D.E. Browne, T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  16. N. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. Ralph, M. Nielsen, Phys. Rev. Lett. 97, 110501 (2006)

    Article  ADS  Google Scholar 

  17. N.C. Menicucci, S.T. Flammia, H. Zaidi, O. Pfister, Phys. Rev. A 76, R010302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, K. Peng, Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  19. N. Menicucci, S. Flammia, O. Pfister, Phys. Rev. Lett. 101, 130501 (2008)

    Article  ADS  Google Scholar 

  20. M. Yukawa, R. Ukai, P. van Loock, A. Furusawa, Phys. Rev. A 78, 012301 (2008)

    Article  ADS  Google Scholar 

  21. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, O. Pfister, Phys. Rev. Lett. 107, 030505 (2011)

    Article  ADS  Google Scholar 

  22. A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, G. Leuchs, Opt. Express 19, 9714 (2011)

    Article  ADS  Google Scholar 

  23. X.F. Qian, J.H. Eberly, Opt. Lett. 36, 4110 (2011)

    Article  ADS  Google Scholar 

  24. J.F. Morizur, S. Armstrong, N. Treps, J. Janousek, H.A. Bachor, Eur. Phys. J. D 61, 237 (2010)

    Article  ADS  Google Scholar 

  25. S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998)

    Article  ADS  Google Scholar 

  26. L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  27. R. Simon, Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  28. A. Luis, L. Sanchez-Soto, Progr. Opt. 41, 421 (2000)

    Article  Google Scholar 

  29. M. Hsu, W. Bowen, P.K. Lam, Phys. Rev. A 79, 043825 (2009)

    Article  ADS  Google Scholar 

  30. M. Lassen, G. Leuchs, U.L. Andersen, Phys. Rev. Lett. 102, 163602 (2009)

    Article  ADS  Google Scholar 

  31. N. Korolkova, G. Leuchs, R. Loudon, T.C. Ralph, C. Silberhorn, Phys. Rev. A 65, 052306 (2002)

    Article  ADS  Google Scholar 

  32. N. Korolkova, R. Loudon, Phys. Rev. A 71, 032343 (2005)

    Article  ADS  Google Scholar 

  33. M.J. Padgett, J. Courtial, Opt. Lett. 24, 430 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gabriel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, C., Aiello, A., Berg-Johansen, S. et al. Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes. Eur. Phys. J. D 66, 172 (2012). https://doi.org/10.1140/epjd/e2012-20735-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20735-y

Keywords

Navigation