Skip to main content
Log in

Gas Transport and Separation Properties of Polynorbornene Treated with Elemental Fluorine in a Perfluorodecalin Liquid

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Surface modification of metathesis-based polynorbornenes (PNB) has been performed by means of direct fluorination. The treatment has been conducted in a flow type reactor in perfluorodecalin medium by fluorination mixture (4.9 vol % F2 + N2) for 30, 60, 120, and 240 min. Virgin and treated PNB films have been investigated by X-ray diffraction, IR spectroscopy, scanning electron microscopy (SEM), and X-ray energy dispersive spectroscopy (XEDS). The surface fluorination of PNB has been shown not to change location of broad reflexes on X-ray powder diffraction patterns and the samples retain amorphous nature. SEM and XEDS have demonstrated laminate structure of treated films and have shown gradual increase of the thickness of the fluorinated layers up to 6–7 µm according to both second electron contrast and concentration profile of fluorine. However, a slight decrease of thickness for the film fluorinated for 240 min has been observed that can be explained by its partial dissolution in the perfluorinated medium. IR spectroscopy has shown (i) an increase of concentration of fluorine- and oxygen-containing groups in the surface layers with increase of fluorination time and (ii) the fluorination is predominantly realized via hydrogen atoms at cis-C=C bonds of norbornene chain. The study of the gas transport and gas separation properties of surface-fluorinated PNB films has shown that the greatest modification effect is manifested for PNB films fluorinated for 30 min, while a further increase in the processing time (up to 240 min) does not lead to an improvement in the effective coefficients of permeability and separation selectivities. Similar patterns have been observed when studying the separation of model gas mixtures (He + CH4 and CO2 + CH4) for surface modified PNB films. At the same time, the separation factors increased from 13 to 47 for a He–CH4 mixture and from 12 to 23 for a CO2–CH4 mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Membrane Materials for Gas and Vapor Separation, Synthesis and Application of Silicon-Containing Polymers, Ed. by E. Yampolskii and E. Finkelshtein (Sussex, UK, England, Chichester, 2017).

    Google Scholar 

  2. X. Wang, T. Wilson, D. Alentiev, M. Gringolts, E. Finkelshtein, M. Bermeshev, and B. K. Long, Polym. Chem. 12, 2947 (2021). https://doi.org/10.1039/D1PY00278C

    Article  CAS  Google Scholar 

  3. J. Vargas, A. A. Santiago, J. A. Cruz-Morales, M. A. Tlenkopatchev, T. De Lys, M. López-González, and E. Riande, Macromol. Chem. Phys. 214, 2607 (2013).

    Article  CAS  Google Scholar 

  4. J. Vargas, A. A. Santiago, M. A. Tlenkopatchev, M. López-González, E. Riande, J. Membr. Sci. 361, 78 (2010).

    Article  CAS  Google Scholar 

  5. I. Aranda- Suárez, C. Corona-García, A. A. Santiago, S. López Morales, M. Abatal, M. López-González, and J. Vargas, Macromol. Chem. Phys. 220, 1800481 (2019).

    Article  Google Scholar 

  6. J. A. Cruz-Morales, J. Vargas, A. A. Santiago, S. R. Vásquez-García, M. A. Tlenkopatchev, T. de Lys, and M. López-González, High Perform. Polym. 28, 1246 (2016).

    Article  CAS  Google Scholar 

  7. G. O. Karpov, I. L. Borisov, A. V. Volkov, E. Sh. Finkelshtein, and M. V. Bermeshev, Polymers 12, 1282 (2020).

    Article  CAS  Google Scholar 

  8. G. O. Karpov, M. V. Bermeshev, I. L. Borisov, S. R. Sterlin, A. A. Tyutyunov, N. P. Yevlampieva, B. A. Bulgakov, V. V. Volkov, and E. Sh. Finkelshtein, Polymer 153, 626 (2018).

    Article  CAS  Google Scholar 

  9. R. H. Grubbs, Handbook of Metathesis (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  10. T. Katsumata, M. Shiotsuki, F. Sanda, and T. Masuda, Polymer 50, 1389 (2009).

    Article  CAS  Google Scholar 

  11. N. A. Belov, M. L. Gringolts, A. A. Morontsev, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Polym. Sci. Ser. B 59, 560 (2017). https://doi.org/10.1134/S1560090417050025

    Article  CAS  Google Scholar 

  12. A. A. Morontsev, V. A. Zhigarev, R. Y. Nikiforov, N. A. Belov, M. L. Gringolts, E. Sh. Finkelshtein, and Yu. P. Yampolskii, Europ. Polym. J. 99, 340 (2018).

    Article  CAS  Google Scholar 

  13. Y. Okamoto, H.-C. Chiang, T. Merkel, B. Ameduri, S. Fomin, in Fascinating Fluoropolymers and Their Applications (Elsevier, 2020).

    Google Scholar 

  14. A. P. Kharitonov and B. A. Loginov, Ross. Khim. Zh. 52, 106 (2008).

    CAS  Google Scholar 

  15. V. G. Nazarov, Surface Modification of Polymers (Mos. Gos. Univ. Pechati, Moscow, 2008) [in Russian].

  16. N. A. Belov, A. Y. Alentiev, Y. G. Bogdanova, A. Y. Vdovichenko, and D. S. Pashkevich, Polymers 12, 2836 (2020).

    Article  CAS  Google Scholar 

  17. J. Mohr, D. Paul, T. Mlsna, and R. Lagow, J. Mem. Sci. 55, 131 (1991).

    Article  CAS  Google Scholar 

  18. J. L. Roux, D. Paul, J. Kampa, and R. Lagow, J. Mem. Sci. 90, 21 (1994).

    Article  Google Scholar 

  19. R. J. Lagow, The Discovery of Successful Direct Fluorination Syntheses. Fluorine Chemistry at the Millennium (Elsevier, 2000).

    Google Scholar 

  20. V. G. Nazarov, Ros. Khim. Zhurn. 50, 77 (2006).

    CAS  Google Scholar 

  21. V. G. Nazarov, J. Appl. Polym. Sci. 95, 1198 (2005).

    Article  CAS  Google Scholar 

  22. V. G. Nazarov, V. P. Stolyarov, V. A. Baranov, and L. A. Evlampieva, Ros. Khim. Zhurn. 52, 45 (2008).

    CAS  Google Scholar 

  23. V. G. Nazarov, V. P. Stolyarov, S. P. Molchanov, G. A. Yurasik, and M. N. Artemenko, Polym. Sci. Ser. A 55, 652 (2013).

    Article  CAS  Google Scholar 

  24. A. P. Kharitonov, Izv. Ross. Akad. Nauk. Energetika, 2, 149 (2008).

    Google Scholar 

  25. A. P. Kharitonov, Progr. Org. Coat. 61, 192 (2008).

    Article  CAS  Google Scholar 

  26. A. P. Kharitonov and L. N. Kharitonova, Pure Appl. Chem. 81, 451 (2009).

    Article  CAS  Google Scholar 

  27. K. Charlet, F. Saulnier, D. Gautier, M. Pouzet, M. Dubois, and A. Béakou, Fluorination As An Effective Way To Reduce Natural Fibers Hydrophilicity (RILEM Bookseries, Springer, Netherlands, 2016).

  28. K. Charlet, F. Saulnier, M. Dubois, and A. Beakou, Mater. Design 74, 61 (2015).

    Article  CAS  Google Scholar 

  29. A. Tressaud, E. Durand, C. Labrugčre, A. P. Kharitonov, G. V. Simbirtseva, L. N. Kharitonova, and M. Dubois, Acta Chim. Slov. 60, 495 (2013).

    CAS  PubMed  Google Scholar 

  30. J. Peyroux, M. Dubois, E. Tomasella, E. Petit, D. Flahaut, Appl. Surf. Sci. 315, 426 (2014).

    Article  CAS  Google Scholar 

  31. I. A. Blinov, D. A. Mukhortov, Yu. P. Yampolskii, N. A. Belov, A. Yu. Alentiev, S. V. Chirkov, G. N. Bondarenko, Yu. V. Kostina, S. A. Legkov, A. M. Perepuchov, M. P. Kambur, P. S. Kambur, V. V. Kapustin, O. N. Vozniuk, and E. S. Kurapova, J. Fluorine Chem. 234, 109526 (2020).

    Article  CAS  Google Scholar 

  32. R. J. Lagow and H.-C. Wei, Direct Fluorination of Polymers. Fluoropolymers 1: Synthesis, Ed. by G. G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson (Springer, 2020).

  33. S. R. Allayarov, T. A. Konovalova, A. Waterfield, A. L. Focsan, V. Jackson, R. Craciun, L. D. Kispert, J. S. Thrasher, and D. A. Dixon, J. Fluorine Chem. 127, 1294 (2006).

    Article  CAS  Google Scholar 

  34. J. Peyroux, M. Dubois, E. Tomasella, N. Batisse, A. P. Kharitonov, D. Flahaut, P. Thomas, and L. Romana, Surf. Coat. Technol. 292, 144 (2016).

    Article  CAS  Google Scholar 

  35. N. A. Belov, I. A. Blinov, A. V. Suvorov, R. Yu. Nikiforov, S. V. Chirkov, A. Yu. Alentev, Yu. V. Kostina, I. S. Levin, A. V. Shapagin, and Yu. P. Yampolskii, Membr. Membr. Technol. 3, 114 (2021). https://doi.org/10.1134/S2517751621020025

    Article  CAS  Google Scholar 

  36. A. A. Morontsev, M. L. Gringolts, M. P. Filatova, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 58, 695 (2016).

    Article  CAS  Google Scholar 

  37. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010).

    Article  CAS  Google Scholar 

  38. Yu. G. Bogdanova, V. D. Dolzhikova, M. L. Gringol’ts, Yu. V. Kostina, N. A. Tikhonov, and A. Yu. Alent’ev, Polym. Sci. Ser. A 55, 471 (2013). https://doi.org/10.1134/S0965545X13080014

    Article  CAS  Google Scholar 

  39. T. Steinhauser and W. J. Koros, J. Polym. Sci. Part B 35, 91 (1997).

    Article  Google Scholar 

  40. Polymer Blends, Ed. by D. R. Paul and S. Newman (Academic Press, New York, 1978).

    Google Scholar 

  41. R. Ash, R. M. Barrer, and J. H. Petropoulos, British J. Appl. Phys. 14, 854 (1963).

    Article  Google Scholar 

  42. J. M. Henis and M. K. Tripodi, J. Membr. Sci. 8, 233 (1981).

    Article  CAS  Google Scholar 

  43. J.-S. Chen and F. Rosenberger, Chem. Eng. Comm. 109, 195 (1991).

    Article  CAS  Google Scholar 

  44. L. M. Robeson, J. Membr. Sci. 62, 165 (1991).

    Article  CAS  Google Scholar 

  45. L. Robeson, J. Membr. Sci. 320, 390 (2008).

    Article  CAS  Google Scholar 

  46. Y. P. Yampolskii, N. A. Belov, and A. Y. Alentiev, Russ. Chem. Rev. 4, 387 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction and ATR-IR measurements were carried out at the Center for Collective Use “Analytical Center for Deep Refining of Oil and Petrochemistry” of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 18-19-00258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Belov.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, N.A., Nikiforov, R.Y., Alentiev, A.Y. et al. Gas Transport and Separation Properties of Polynorbornene Treated with Elemental Fluorine in a Perfluorodecalin Liquid. Membr. Membr. Technol. 3, 351–364 (2021). https://doi.org/10.1134/S2517751621060020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751621060020

Keywords:

Navigation