Skip to main content
Log in

Influence of Titanium Dioxide Particles Percentage in Modifying Layer on Surface Properties and Current-Voltage Characteristics of Composite Cation-Exchange Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Ion-exchange membranes are widely used as a key element in electromembrane processes, in particular, in the electrodialysis processing of solutions for wastewater treatment, the production of valuable medicinal and nutritional products, and many other applications. One of the main limiting factors in the development of electromembrane technologies is a low rate of mass transfer. A solution to this problem can be intensification of electroconvective mixing of the solution at the membrane surface by surface modification. Samples of composite membranes were prepared by forming a modifying film of perfloursolfonic acid polymer with the embedded TiO2 particles of the various percentage on the surface of a heterogeneous cation-exchange membrane MK-40. It has been shown that this modification leads to a multiple increase in the electric charge and a change in the parameters of geometric inhomogeneity of the membrane surface. It has been found that the optimal combination of these characteristics is achieved in the case of a sample containing 3 wt % TiO2, which provides a maximum increase (by a factor of 1.5) in the limiting current density due to electroconvection, which occurs according to the mechanism of electroosmosis of the first kind. The same sample demonstrates the minimum threshold values of the potential drop required for the transition from equilibrium electroconvection to the non-equilibrium one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Strathmann, Desalination 264, 268 (2010).

    Article  CAS  Google Scholar 

  2. T. Xu and C. Huang, AIChE J. 54, 3147 (2008).

    Article  CAS  Google Scholar 

  3. T. Xu, Y. Zhang, W.-Y. Zhao, M. Zhou, B. Yan, X. Sun, Y. Liu, and Y. Wang, Ind. Eng. Chem. Res. 57, 6025.

  4. R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Adv. Colloid Interface Sci. 119, 97 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. H. Strathmann, A. Grabowski, and G. Eigenberger, Ind. Eng. Chem. Res. 52, 10364 (2013).

    Article  CAS  Google Scholar 

  6. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, A. M. Uzdenova, A. V. Kovalenko, M. Kh. Urtenov, and G. Pourcelly, Russ. J. Electrochem. 53, 1122 (2017).

    Article  CAS  Google Scholar 

  7. S. Mikhaylin and L. Bazinet, Adv. Colloid Interface Sci. 229, 34 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. M. A. Andreeva, V. V. Gil, N. D. Pismenskaya, L. Dammak, N. A. Kononenko, C. Larchet, D. Grande, and V. V. Nikonenko, J. Membr. Sci. 549, 129 (2018).

    Article  CAS  Google Scholar 

  9. N. A. Mishchuk, Colloids Surf. A 140, 75 (1998).

    Article  CAS  Google Scholar 

  10. E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, and G. Pourcelly, J. Colloid Interface Sci. 285, 247 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. S. M. Davidson, M. Wessling, and A. Mani, Sci. Rep. 6, 22505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. M. Benneker, B. Gumuscu, E. G. H. Derckx, R. G. H. Lammertink, J. C. T. Eijkel, and J. A. Wood, Lab on a Chi 18, 1652 (2018).

    Article  CAS  Google Scholar 

  13. S. Pawlowski, J. G. Crespo, and S. Velizarov, Int. J. Mol. Sci. 20, 165 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  14. L. Gurreri, A. Filingeri, M. Ciofalo, A. Cipollina, M. Tedesco, A. Tamburini, and G. Micale, Desalination 506, 115001 (2021).

    Article  CAS  Google Scholar 

  15. E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, K. A. Shevtsova, A. V. Nebavsky, K. A. Lebedev, and V. V. Nikonenko, Electrochim. Acta 59, 412 (2012).

    Article  CAS  Google Scholar 

  16. V. S. Shelistov, E. A. Demekhin, and G. S. Ganchenko, Phys. Rev. E 90, 013001 (2014).

    Article  CAS  Google Scholar 

  17. K. A. Nebavskaya, V. V. Sarapulova, K. G. Sabbatovskiy, V. D. Sobolev, N. D. Pismenskaya, P. Sistat, M. Cretin, and V. V. Nikonenko, J. Membr. Sci. 523, 36 (2017).

    Article  CAS  Google Scholar 

  18. V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, N. D. Pismenskaya, J. Han, P. Sistat, and G. Pourcelly, Desalination 342, 85 (2014).

    Article  CAS  Google Scholar 

  19. M. V. Porozhnyy, S. A. Shkirskaya, D. Y. Butylskii, V. V. Dotsenko, E. Y. Safronova, A. B. Yaroslavtsev, S. Deabate, P. Huguet, and V. V. Nikonenko, Electrochim. Acta 370, 137689 (2021).

    Article  CAS  Google Scholar 

  20. C. Laberty-Robert, K. Vallé, F. Pereira, and C. Sanchez, Chem. Soc. Rev. 40, 961 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. M. Mika, M. Paidar, B. Klapste, M. Masinova, K. Bouzek, and J. Vondrak, J. Phys. Chem. Solids 68, 775 (2007).

    Article  CAS  Google Scholar 

  22. D. V. Golubenko, R. R. Shaydullin, and A. B. Yaroslavtsev, Colloid Polym. Sci. 297, 741 (2019).

    Article  CAS  Google Scholar 

  23. F. Pereira, K. Vallé, P. Belleville, A. Morin, S. Lambert, and C. Sanchez, Chem. Mater. 20, 1710 (2008).

    Article  CAS  Google Scholar 

  24. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, Desalination 308, 15 (2013).

    Article  CAS  Google Scholar 

  25. Y. Yang, H. Zhang, P. Wang, Q. Zheng, and J. Li, J. Membr. Sci. 288, 231 (2007).

    Article  CAS  Google Scholar 

  26. X. Li, J. Li, B. Van der Bruggen, X. Sun, J. Shen, W. Han, and L. Wang, RSC Adv. 5, 50711 (2015).

  27. M. Nemati, S. M. Hosseini, E. Bagheripour, and S. S. Madaeni, J. Membr. Sci. Res. 1, 135 (2015).

    Google Scholar 

  28. S. H. Kim, S. Kwak, B. H. Sohn, and T. H. Park, J. Membr. Sci. 211, 157 (2003).

    Article  CAS  Google Scholar 

  29. A. Rahimpour, M. Jahanshahi, B. Rajaeian, and M. Rahimnejad, Desalination 278, 340 (2011).

    Article  CAS  Google Scholar 

  30. A. Razmjou, E. Arifin, G. Dong, J. Mansouri, and V. Chen, J. Membr. Sci. 305/306, 847 (2012).

    Google Scholar 

  31. Y. Mansourpanah, S. S. Madaeni, A. Rahimpour, A. Farhadian, and A. H. Taheri, J. Membr. Sci. 330, 297 (2009).

    Article  CAS  Google Scholar 

  32. X. Wang, G. Q. Chen, W. Zhang, and H. Deng, J. Taiwan Inst. Chem. Eng. 105, 8 (2019).

    CAS  Google Scholar 

  33. W. Choi, E. P. Chan, J. Park, W. Ahn, H. W. Jung, S. Hong, J. S. Lee, J. Han, S. Park, D. Ko, et al., ACS Appl. Mater. Interfaces 8, 31433 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems (John Wiley & Sons, Inc., New York, 2004).

    Google Scholar 

  36. K. G. Sabbatovskii, A. I. Vilenskii, and V. D. Sobolev, Colloid J. 78, 573 (2016).

    Article  CAS  Google Scholar 

  37. G. Hagmeyer and R. Gimbel, Desalination 117, 247 (1998).

    Article  CAS  Google Scholar 

  38. M. D. Afonso, G. Hagmeyer, and R. Gimbel, Sep. Purif. Technol. 22–23, 529 (2001).

    Article  Google Scholar 

  39. J. Lukáš, K. Richau, H. H. Schwarz, and D. Paul, J. Membr. Sci. 131, 39 (1997).

    Article  Google Scholar 

  40. J.-S. Park, H.-J. Lee, S.-J. Choi, K. E. Geckeler, J. Cho, and S.-H. Moon, J. Colloid Interface Sci. 259, 293 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. H.-J. Butt, K. Graf, and M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH, Weinheim, Germany, 2006).

    Google Scholar 

  42. C. Su, B.-Y. Hong, and C.-M. Tseng, Catal. Today 96, 119 (2004).

    Article  CAS  Google Scholar 

  43. K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, and P. Biswas, Nanoscale Res. Lett. 6, 27 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. S. Goswami, S. Klaus, and J. Benziger, Langmuir 24, 8627 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, J. Phys. Chem. B 114, 3784 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    Article  CAS  Google Scholar 

  47. H.-W. Rösler, F. Maletzki, and E. A. Staude, J. Membr. Sci. 72, 171 (1992).

    Article  Google Scholar 

  48. I. Rubinstein and B. Zaltzman, Phys. Rev. E 62, 2238 (2000).

    Article  CAS  Google Scholar 

  49. J. H. Choi, H. J. Lee, and S. H. Moon, J. Colloid Interface Sci. 238, 188 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. S. S. Dukhin, Adv. Colloid Interface Sci. 35, 173 (1991).

    Article  CAS  Google Scholar 

  51. N. A. Mishchuk and P. V. Takhistov, Colloids Surf. A 95, 119 (1995).

    Article  CAS  Google Scholar 

  52. I. Rubinstein and B. Zaltzman, Phys. Rev. Lett. 114, 114502 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. I. Rubinstein and B. Zaltzman, Math. Models Methods Appl. Sci. 11, 263 (2001).

    Article  CAS  Google Scholar 

  54. I. Rubinstein, B. Zaltzman, and T. Pundik, Phys. Rev. E 65, 041507 (2002).

    Article  CAS  Google Scholar 

  55. N. A. Mishchuk, Curr. Opin. Colloid Interface Sci. 18, 137 (2013).

    Article  CAS  Google Scholar 

  56. H.-C. Chang, E. A. Demekhin, and V. S. Shelistov, Phys. Rev. E 86, 046319 (2012).

    Article  CAS  Google Scholar 

  57. R. Simons, Nature 280, 824 (1979).

    Article  CAS  Google Scholar 

  58. V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study of the samples by scanning electron microscopy with energy dispersive X-ray analysis was carried out using the equipment of the Diagnostics of the Structure and Properties of Nanomaterials Center for Collective Use of the Kuban State University.

Funding

This work was supported by the Russian Science Foundation, grant no. 19-79-00347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gil.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, V.V., Porozhnyy, M.V., Rybalkina, O.A. et al. Influence of Titanium Dioxide Particles Percentage in Modifying Layer on Surface Properties and Current-Voltage Characteristics of Composite Cation-Exchange Membranes. Membr. Membr. Technol. 3, 334–343 (2021). https://doi.org/10.1134/S2517751621050061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751621050061

Keywords:

Navigation