Skip to main content
Log in

Soil Properties and Organic Carbon Stock of Soils under Arid Coastal Ecosystem Oasis in Southern East of Tunisia

  • SYSTEMATIC STUDY OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

Our knowledge about soil properties and soil organic carbon stock under arid ecosystems is crucial if we are to optimize soil organic carbon sequestration to mitigate climate changes. This study aims at investigating soil properties, soil organic carbon (SOC) pools, and stocks in soil under arid ecosystem oasis. Soil samples were randomly collected from 0–5 and 0–30 cm depths in 17 sites (34 samples). The bulk density, pH, electrical conductivity EC, calcium carbonate and gypsum were measured in soil samples. Total SOC, particulate organic carbon (POC), SOC associated with the fine mineral fraction concentrations and stocks were also determined. Results showed that soils under oasis are characterized by high pH and EC values. Similarly we recorded great amount of CaCO3 and gypsum among sites and depths. However bulk density values ranged from 1.23 to 1.30 and 1.18 to 1.35 g cm–3 respectively in 0–5 and 0–30 cm layer depths. The total SOC concentrations range on average between 8.47 to 13.25 g kg–1 and between 9.27 to 11.06 g kg–1 in 0–5 and in 0–30 cm layers respectively. In all samples the SOCff represents the major organic pools of SOC (>60%). Among sites the SOCs in 0–5 cm layer depth were between 0.4 and 0.8 kg C m–2 and reach 4 kg C m–2 (40 t ha–1) in 0–30 cm. The POCs constitute only between 21 and 34%. The correlation matrix established between soil properties shows significant negative correlation (p = 0.05) between POC and EC. However, SOCs are largely positively correlated (p = 0.01) with different SOC pools. It can be said that soils under oasis store relatively high amount of organic carbon. Therefore, this study confirms that arid soils can be considered as a potential sink in North Africa to sequester SOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Akinremi, O.O., McGinn, S.M., and McLean, H.D.J., Effects of soil temperature and moisture on soil respiration in barley and fallow plots, Can. J. Soil Sci., 1999, vol. 79, pp. 5–13.

    Article  Google Scholar 

  2. Albaladejo, J., Ortiz, R., and Garcia-Franco, N., Ruiz Navarro, A., Almagro, M., Pintado J.G., and Martinez-Mena, M., Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain, J. Soils Sediments, 2013, vol. 13, pp. 265–277.

    Article  CAS  Google Scholar 

  3. Amin, M., Khan, M.J., and Jan, M., T, ur Rehman, M., Javaid Akhtar Tariq, J.A., Hanif, M., and Shah Z., Effect of different tillage practices on soil physical properties under wheat in semi-arid environment, Soil Environ., 2014, vol. 33, pp. 33–37.

    Google Scholar 

  4. Batjes, N.H., Carbon and nitrogen stocks in the soils of central and Eastern Europe, Soil Use Manage., 2002, vol. 18, pp. 324–329.

    Article  Google Scholar 

  5. Batjes, N.H., Organic carbon stocks in soils of Brazil, Soil Use Manage., 2005, vol. 21, pp. 22–24.

    Article  Google Scholar 

  6. Bouajila, A. and Gallali, T., Land use effect on soil and particulate organic carbon, and aggregate stability in some soils in Tunisia, Afr. J. Agric. Res., 2010, vol. 5, pp. 764–774.

    Google Scholar 

  7. Bouajila, A., Brahim, N., and Gallali, T., Rôle des différentes fractions organiques dans la stabilité structurale des sols à textures riches en sables du Nord et du Centre de la Tunisie, Etude et Gestion des Sols, 2016, vol. 23, pp. 79–92.

    Google Scholar 

  8. Bouksila, F., Bahri, A., Berndtsson, R., Persson, M., Rozema, J., and Zee, V., Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia, Environ. Exp. Bot., 2013, vol. 92, pp. 176–185.

    Article  CAS  Google Scholar 

  9. Boulbaba, A., Marzouk, L., Ben Rabah, R., and Najet, S., Variations of natural soil salinity in an arid environment using underground watertable effects on salinization of soils in irrigated perimeters in South Tunisia, Int. J. Geosci., 2012, vol. 3, pp. 1040–1047.

    Article  Google Scholar 

  10. Brahim, N. and Ibrahim, H., and Hatira, A., Tunisian soil organic carbon stock- Spatial and vertical variation, Procedia Eng., 2014, vol. 69, pp. 1549–1555.

    Article  CAS  Google Scholar 

  11. Brahim, N., Karbout, N., Dhaouadi, L., and Bouajila, A., Global landscape of organic carbon and total nitrogen in the soils of oasis ecosystems in southern Tunisia, Agronomy, 2021, vol. 11, p. 1903.

    Article  CAS  Google Scholar 

  12. Cambardella, C.A. and Elliot, E.T., Particulate soil organic matter changes across a grassland cultivation sequence, Soil Sci. Soc. Am. J., 1992, vol. 56, pp. 777–783.

    Article  Google Scholar 

  13. Chan, K.Y., Soil particulate organic carbon under different land use and management, Soil Use Manage., 2001, vol. 17, p. 217–221.

    Article  Google Scholar 

  14. Dridi, I. and Gueddari, M., Field and laboratory study of nitrogen mineralization dynamics in four Tunisian soils, J. Afr. Earth Sci., 2019, vol. 154, pp. 101–110. https://doi.org/10.1016/j.jafrearsci.2019.03.021

    Article  CAS  Google Scholar 

  15. Elbasiouny, H., Bowaly, A., and Gad, A., Abu_Alkheir, A., and Elbehiry, F., Restoration and sequestration of carbon and nitrogen in the degraded northern coastal area in Nile Delta, Egypt for climate change mitigation, Journal of Coastal Conservation, 2017, vol. 21, pp. 105–114.

    Article  Google Scholar 

  16. Göl, C., Bulut, S., and Bolat, F., Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in Black Sea backward region of Turkey, J. Afr. Earth Sci., 2017, vol. 06.014, pp. 85–91. https://doi.org/10.1016/j.jafrearsci

    Article  Google Scholar 

  17. Haj-Amor, Z., Hashemi, H., and Bouri, S., Soil salinization and critical shallow groundwater depth under saline irrigation condition in a Saharan irrigated land, Arabian J. Geosci., 2017, vol. 10, pp. 301–312.

    Article  Google Scholar 

  18. Hassink, J., Whitmore, A.P., and Kubat, J., Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter, Eur. J. Agron., 1997, vol. 7, pp. 189–199.

    Article  Google Scholar 

  19. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, International soil classification system for naming soils and creating legends for soil maps, World Soil Resour. Rep., FAO, Rome, 2015, no. 106.

  20. Lal, R., Carbon sequestration in dryland ecosystems of west Asia and North Africa, Land Degradation and Development, 2002, vol. 13, pp. 45–59.

    Article  Google Scholar 

  21. Lal, R., Hassan, H.M., and Dumanski, J., Desertification control to sequester C and mitigate the greenhouse effect, in Carbon Sequestration in Soils: Science, Monitoring and Beyond, Rosenberg, N., Izaurralde, R.C., and Malone, E.L., Eds., Battelle Press, Coloumbus, OH, 1999, pp. 83–149.

    Google Scholar 

  22. Li, C., Li, Y., Xie, J., Liu, Y., and Wang, Y., and Liu, X., Accumulation of organic carbon and its association with macro-aggregates during 100 years of oasis formation, Catena, 2019, vol. 172, p. 770–780. https://doi.org/10.1016/j.catena.2018.09.044

    Article  CAS  Google Scholar 

  23. Liebens, J. and Van Molle, M., Influence of estimation procedure on soil organic carbon stock assessment in Flanders, Belgium, Soil Use Manage., 2003, vol. 19, pp. 364–371.

    Article  Google Scholar 

  24. Matzener, E. and Borken, W., Do freeze/thaw events enhance C and N losses from soil of different ecosystems? A review, Eur. J. Soil Sci., vol. 5, pp. 274–284.

  25. McLean, E.O., Soil pH and lime requirement, in Methods of Soil Analysis. Part 2, Page, A.L., Ed., Madison, WI: ASA and SSSA, 1982, 2nd ed., vol. 9.

    Google Scholar 

  26. Mlih, R., Soil Organic Matter Management in Coastal and Desert Oasis – A Case Study for the Gabès and Kebili Oasis in Tunisia. Master, Yulich University, Germany, 2015.

    Google Scholar 

  27. Mlih, R., Bol, R., Amelung, W., and Brahim, N., Soil organic matter amendments indate palm groves of the Middle Eastern and North African region: A mini-review, Journal of Arid Land, 2016, vol. 8, pp. 77–92.

    Article  Google Scholar 

  28. Mlih, R., Gocke, M.I., Bol, R., Berns, A.E., Fuhrmann, I., and Brahim, N., Soil organic matter composition in coastal and continental date palm systems – Insights from Tunisian oases, Pedosphere, 2019, vol. 29, pp. 444–456.

    Article  CAS  Google Scholar 

  29. Munoz-Rojas, M., Jordan, A., Zavala, L., De la Rosa, D., Abd-Elmabod, S., and Anaya-Romero, M., Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain), Solid Earth, 2012, vol. 3, pp. 375–386.

    Article  Google Scholar 

  30. Nelson, D.W., Sommers, L.E., Total carbon, organic carbon, and organic matter, in Methods of Soil Analysis, Agronomy. Part 2, Page, A.L, Miller, R.H, and Keeney, D.R., Eds., Madison, WI: ASA and SSSA, 1982, 2nd ed., pp. 539–577.

    Google Scholar 

  31. Nelson, R.E., Carbonate and gypsum, in Methods of Soil Analysis. Part 2, Page, A.L, Miller, R.H, and Keeney, D.R., Eds., Madison, WI: ASA and SSSA, 1982, 2nd ed., vol. 9, pp. 181–197.

    Google Scholar 

  32. Omar, Z., Bouajila, A., Brahim, N., and Grira, M., Soil property and soil organic carbon pools and stocks of soils under oasis in arid regions of Tunisia, Environ. Earth Sci., 2017, vol. 76, pp. 415–425.

    Article  Google Scholar 

  33. Omar, Z., Bouajila, A., Bouajila, J., Rahman, R., Besser, H., and Hamed, Y., Spectroscopic and chromatographic investigation of soil organicmatter composition for different agrosystems from arid saline soils from Southeastern Tunisia, Arabian J. Geosci., 2020, vol. 13.

  34. Pandey, C.B., Singh, G.B., Singh, S.K., and Singh, R.K., Soil nitrogen and microbial biomass carbon dynamics in native forests and derived agricultural land uses in a humid tropical climate of India, Plant Soil, 2010, vol. 33, pp. 453–467.

    Article  Google Scholar 

  35. Pouget, M., Etude pédologique de la zone Gabès-Nord, Sect. Et. Pehl., 1965, vol. 246.

    Google Scholar 

  36. Setia, R., Marschner, P., Baldock, J., Chittleborough, D., Smith, P., and Smith, J., Salinity effects on carbon mineralization in soils of varying texture, Soil Biol. Biochem., 2011, vol. 43, pp. 1908–1916.

    Article  CAS  Google Scholar 

  37. Siebert, S., Analysis of Arid Agricultural Systems Using Quantitative Image Analysis, Modeling and Geographical Information Systems, Kassel University press GmbH, 2005.

  38. Sinoga, J.D.R., Pariente, S., Diaz, A.R., Francisco, J., and Murillo, M., Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain), Catena, 2012, vol. 94, pp. 17–25.

    Article  Google Scholar 

  39. Smith, J.L. and Doran, J.W., Measurement and use of pH and electrical conductivity for soil quality analysis, in Methods for Assessing Soil Quality, Doran, J.W. and Jones, A.J., Eds., Madison, WI: Soil Science Society of America, 1996, special publication 49, pp. 169–185.

  40. Sulieman, M. and Sallam, A.A., Improved method to determine particle size distribution for some gypsiferous soils. A case study from Al-Ahsa Governorate, Saudi Arabia, Eurasian Soil Sci., 2016, vol. 5, pp. 322–331.

    Google Scholar 

  41. Triki Fourati, H., Bouaziz, M., Benzina, M., and Bouaziz, S., Modeling of soil salinity within a semi-arid region using spectral analysis, Arabian J. Geosci., 2015, vol. 8, pp. 11175–11182.

    Article  Google Scholar 

  42. Tripathi, S., Kumari, A., Chakraborty, A., Gupta, A., Chakrabarti, K., and Bandyapadhyay, B.K., Microbial biomass and its activities in salt-affected coastal soils, Biol. Fertil. Soils, 2006, no. 42, pp. 273–277.

  43. UNEP (United Nations Environment Programme), World Atlas of Desertification, UNEP, 1997, 2nd ed.

  44. Vieillefon, J., Contribution à l'amélioration de l'étude analytique des sols gypseux, Cah. ORSTOM. Sér. Pédol., 1979, vol. 17, pp. 195–223.

    CAS  Google Scholar 

  45. Wang, S., Wilkes, A., Zhang, Z., Chang, X., Lang, R., Wang, Y., and Niu, H., Management and land use change effects on soil carbon in northern China’s grasslands: A synthesis, Agric., Ecosyst. Environ., 2011, vol. 142, pp. 329–340.

    Article  Google Scholar 

  46. Wiesmeier, M., Schad, P., Poeplau, C., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., and Kögel-Knabner, I., Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria), Agric., Ecosyst. Environ., 2014, vol. 185, pp. 208–220.

    Article  CAS  Google Scholar 

  47. Wong, V.N.L., Dalal, R.C., and Greene, R.S.B., Carbon dynamics of sodic and salin soils following gypsum and organic material additions: A laboratory incubation, Applied Soil Ecology, 2009, vol. 41, pp. 29–40.

    Article  Google Scholar 

  48. Xu, E., Zhang, H., and Xu, Y., Exploring land reclamation history: Soil organic carbon sequestration due to dramatic oasis agriculture expansion in arid region of Northwest China, Ecol. Indic., 2020, vol. 108, p. 105746. https://doi.org/10.1016/j.ecolind.2019.105746

    Article  CAS  Google Scholar 

  49. Yigini, Y. and Panagos, P., Assessment of soil organic carbon stocks under future climate and land cover changes in Europe, Sci. Total Environ., 2016, vol. 557, pp. 838–850.

    Article  PubMed  Google Scholar 

  50. Zhang, K.C., An, Z.S., Cai, D.W., Guo, Z.C., Xiao, J.H., Key role of desert-oasis, transitional area in avoiding oasis land degradation from Aeolian desertification in Dunhuang, northwest China, Land Degradation & Development, 2017, vol. 28, pp. 142–150.

    Article  Google Scholar 

  51. Znaidi, A., Brahim, N., Ibrahim, H., Bol, R., and Chaouachi, M., Comparison of organic carbon stock of Regosols under two different climates and land use in Tunisia, Arabian J. Geosci., 2020, vol. 13, p. 1011. https://doi.org/10.1007/s12517-020-06011-4

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Exploratory Grant (STC_TUNGER-006/INTOASES) as part of the Bilateral Scientific and Technological Cooperation between the Republic of Tunisia and the Federal Republic of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouajila.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouajila, A., Omar, Z., Essayeh, W. et al. Soil Properties and Organic Carbon Stock of Soils under Arid Coastal Ecosystem Oasis in Southern East of Tunisia. Arid Ecosyst 13, 167–179 (2023). https://doi.org/10.1134/S2079096123020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079096123020026

Keywords:

Navigation