Skip to main content
Log in

Mechanisms of Drug Resistance in Acute Myeloid Leukemia

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is a set of hematological diseases characterized by clonal expansion of immature myeloid precursors. Chemotherapy is one of the main methods of AML treatment. However, the emergence of drug resistance in leukemic cells, which is a serious obstacle to the treatment of the disease, worsens the clinical outcome. To develop competent treatment strategies for AML treatment, it is necessary to understand the essence of the mechanisms of resistance to certain cytostatics and cytotoxic drugs. This review examines various currently known mechanisms underlying drug resistance in leukemic cells at the levels of intracellular molecular pathways and intercellular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Allan, J.M., Smith, A.G., Wheatley, K., et al., Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy, Blood, 2004, vol. 104, no. 13, pp. 3872–3877.

    CAS  PubMed  Google Scholar 

  2. Auberger, P. and Puissant, A., Autophagy, a key mechanism of oncogenesis and resistance in leukemia, Blood, 2017, vol. 129, no. 5, pp. 547–552.

    CAS  PubMed  Google Scholar 

  3. Bertuccio, S.N., Serravalle, S., Astolfi, A., et al., Identification of a cytogenetic and molecular subgroup of acute myeloid leukemias showing sensitivity to L-asparaginase, Oncotarget, 2017, vol. 8, no. 66, pp. 109915–109923.

    PubMed  PubMed Central  Google Scholar 

  4. Blokhin, D.Yu., The reasons for the limited efficiency of anticancer therapy in terms of cell biology, Ross. Bioter. Zh., 2005, vol. 4, no. 3, pp. 18–23.

    Google Scholar 

  5. Bosman, M.C.J., Schuringa, J.J., and Vellenga, E., Constitutive NF-κB activation in AML: causes and treatment strategies, Crit. Rev. Oncol. Hematol., 2016, vol. 98, pp. 35–44. https://doi.org/10.1016/j.critrevonc.2015.10.001

    Article  PubMed  Google Scholar 

  6. Bouvy, C., Wannez, A., Laloy, J., et al., Transfer of multidrug resistance among acute myeloid leukemia cells via extracellular vesicles and their microRNA cargo, Leuk. Res., 2017, vol. 62, pp. 70–76.

    CAS  PubMed  Google Scholar 

  7. Caivano, A., La Rocca, F., Laurenzana, I., et al., Extracellular vesicles in hematological malignancies: from biology to therapy, Int. J. Mol. Sci., 2017, vol. 18, no. 6. https://doi.org/10.3390/ijms18061183

  8. Callaghan, R., Luk, F., and Bebawy, M., Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos., 2014, vol. 42, no. 4, pp. 623–631.

    PubMed  PubMed Central  Google Scholar 

  9. Chen, X., Clark, J., Wunderlich, M., et al., Autophagy is dispensable for Kmt2a/Mll-Mllt3/Af9 AML maintenance and anti-leukemic effect of chloroquine, Autophagy, 2017, vol. 13, no. 5, pp. 955–966.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, Y., Jacamo, R., Konopleva, M., et al., CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia, J. Clin. Invest., 2013, vol. 123, no. 6, pp. 2395–2407.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Constance, J.E. and Lim, C.S., Targeting malignant mitochondria with therapeutic peptides, Ther. Delivery, 2012, vol. 3, no. 8, pp. 961–979.

    CAS  Google Scholar 

  12. Corces, M.R., Chang, H.Y., and Majeti, R., Preleukemic hematopoietic stem cells in human acute myeloid leukemia, Front. Oncol., 2017, vol. 7, p. 263.

    PubMed  PubMed Central  Google Scholar 

  13. Cruz-Miranda, G.M., Hidalgo-Miranda, A., Bárcenas-López, D.A., et al., Long non-coding RNA and acute leukemia, Int. J. Mol. Sci., 2019, vol. 20, no. 3. https://doi.org/10.3390/ijms20030735

  14. Daver, N., Schlenk, R.F., Russell, N.H., and Levis, M.J., Targeting FLT3 mutations in AML: review of current knowledge and evidence, Leukemia, 2019, vol. 33, no. 2, pp. 299–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. De Kouchkovsky, I. and Abdul-Hay, M., Acute myeloid leukemia: a comprehensive review and 2016 update, Blood Cancer J., 2016, vol. 6, no. 7, p. e441.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. De Necochea-Campion, R., Shouse, G.P., Zhou, Q., et al., Aberrant splicing and drug resistance in AML, J. Hematol. Oncol., 2016, vol. 9, no. 1, p. 85.

    PubMed  PubMed Central  Google Scholar 

  17. Di Tullio, A., Rouault-Pierre, K., Abarrategi, A., et al., The combination of CHK1 inhibitor with G-CSF overrides cytarabine resistance in human acute myeloid leukemia, Nat. Commun., 2017, vol. 8, no. 1, p. 1689.

    Google Scholar 

  18. Djavaheri-Mergny, M., Giuriato, S., Tschan, M.P., and Humbert, M., Therapeutic modulation of autophagy in leukaemia and lymphoma, Cells, 2019, vol. 8, no. 2, р. 103.

  19. Du, Y. and Chen, B., Detection approaches for multidrug resistance genes of leukemia, Drug Des. Dev. Ther., 2017, vol. 11, pp. 1255–1261.

    CAS  Google Scholar 

  20. Esposito, M.T. and So, C.W.E., DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance, Chromosoma, 2014, vol. 123, no. 6, pp. 545–561.

    CAS  PubMed  Google Scholar 

  21. Feng, D.-D., Zhang, H., Zhang, P., et al., Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia, J. Cell Mol. Med., 2011, vol. 15, no. 10, pp. 2164–2175.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gabra, M.M. and Salmena, L., microRNAs and acute myeloid leukemia chemoresistance: a mechanistic overview, Front. Oncol., 2017, vol. 7, p. 255.

    PubMed  PubMed Central  Google Scholar 

  23. Gol’dberg, V.E. and Matyash, M.G., Advanced drug therapy for malignant neoplasms, Sib. Nauchn. Med. Zh., 2004, no. 2, pp. 36–40.

  24. Grandage, V.L., Gale, R.E., Linch, D.C., and Khwaja, A., PI3-kinase/AKT is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kB, MAPkinase and p53 pathways, Leukemia, 2005, vol. 19, no. 4, pp. 586–594.

    CAS  PubMed  Google Scholar 

  25. Grinev, V., Barneh, F., Ilyushonak, I., et al., RUNX1/RUNX1T1 mediates alternative splicing and reorganizes the transcriptional landscape in leukemia, Nat. Commun., 2021, vol. 12, no. 1, p. 520.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Haaland, I., Opsahl, J.A., Berven, F.S., et al., Molecular mechanisms of nutlin-3 involve acetylation of p53, histones and heat shock proteins in acute myeloid leukemia, Mol. Cancer, 2014, vol. 13, p. 116.

    PubMed  PubMed Central  Google Scholar 

  27. Hakem, R., DNA-damage repair: the good, the bad, and the ugly, EMBO J., 2008, vol. 27, no. 4, pp. 589–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hano, M., Tomášová, L., Šereš, M., et al., Interplay between P-glycoprotein expression and resistance to endoplasmic reticulum stressors, Molecules, 2018, vol. 23, no. 2, p. 337.

    PubMed Central  Google Scholar 

  29. Hanekamp, D.W., Johnson, M.K., Portwood, S., et al., Autophagy promotes the survival and therapy resistance of human acute myeloid leukemia cells under hypoxia, Blood, 2014, vol. 124, no. 21, p. 2236.

    Google Scholar 

  30. Hynes, R.O., Integrins: bidirectional, allosteric signaling machines, Cell, 2002, vol. 110, no. 6, pp. 673–687.

    CAS  PubMed  Google Scholar 

  31. Jiang, X., Wang, Z., Ding, B., et al., The hypomethylating agent decitabine prior to chemotherapy improves the therapy efficacy in refractory/relapsed acute myeloid leukemia patients, Oncotarget, 2015, vol. 6, no. 32, pp. 33612–33622.

    PubMed  PubMed Central  Google Scholar 

  32. Kalinina, E., Andreev, Y., Lubova, K., et al., Redox-dependent change in the expression of genes controlling cellular ROS/antioxidants balance under formation of cancer cell resistance to cisplatin, FEBS Open Bio, 2018, vol. 8, suppl. 1, p. 357.

    Google Scholar 

  33. Karathedath, S., Rajamani, B.M., Musheer Aalam, S.M., et al., Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2, PLoS One, 2017, vol. 12, no. 5, p. e0177227.

    PubMed  PubMed Central  Google Scholar 

  34. Kojima, K., Konopleva, M., Samudio, I.J., et al., MDM2 antagonists induces p53-dependent apoptosis in AML: implications for leukemia therapy, Blood, 2005, vol. 106, no. 9, pp. 3150–3159.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Konopleva, M., Konoplev, S., Hu, W., et al., Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins, Leukemia, 2002, vol. 16, no. 9, pp. 1713–1724.

    CAS  PubMed  Google Scholar 

  36. Kopnin, B.P., Modern concepts of the mechanisms of malignant growth: similarities and differences between solid tumors and leukemias, Klin. Onkogematol. Fundam. Issled. Klin. Prakt., 2012, vol. 5, no. 3, pp. 165–185.

    Google Scholar 

  37. Lagunas-Rangel, F.A., Chávez-Valencia, V., Gómez-Guijosa, M.Á., and Cortes-Penagos, C., Acute myeloid leukemia—genetic alterations and their clinical prognosis, Int. J. Hematol. Oncol. Stem Cell Res., 2017, vol. 11, no. 4, pp. 328–339.

    PubMed  PubMed Central  Google Scholar 

  38. Lainey, E., Sébert, M., Thépot, S., Scoazec, M., et al., Erlotinib antagonizes ABC transporters in acute myeloid leukemia, Cell Cycle, 2012, vol. 11, no. 21, pp. 4079–4092.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao, Q., Wang, B., Li, X., and Jiang, G., miRNAs in acute myeloid leukemia, Oncotarget, 2017, vol. 8, no. 2, pp. 3666–3682.

    PubMed  Google Scholar 

  40. Liu, Ya., Cheng, Z., Pang, Y., et al., Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia, J. Hematol. Oncol., 2019, vol. 12, no. 1, p. 51.

    PubMed  PubMed Central  Google Scholar 

  41. Liu, Yu., Li, Q., Zhou, L., Xie, N., et al., Cancer drug resistance: redox resetting renders a way, Oncotarget, 2016a, vol. 7, no. 27, pp. 42740–42761.

    PubMed  PubMed Central  Google Scholar 

  42. Liu, X., Liao, W., Peng, H., et al., miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM, J. Cancer Res. Clin. Oncol., 2016b, vol. 142, no. 1, pp. 77–87.

    CAS  PubMed  Google Scholar 

  43. Long, X., Gerbing, R., Alonzo, T.A., and Redell, M.S., Distinct signaling events promote resistance to mitoxantrone and etoposide in pediatric AML: a Children’s Oncology Group report, Oncotarget, 2017, vol. 8, no. 52, pp. 90037–90049.

    PubMed  PubMed Central  Google Scholar 

  44. Ma, P., Dong, X., Swadley, C.L., Gupte, A., et al., Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia, J. Biomed. Nanotechnol., 2009, vol. 5, no. 2, pp. 151–161.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maacha, S., Bhat, A.A., Jimenez, L., et al., Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance, Mol. Cancer, 2019, vol. 18, no. 55. https://doi.org/10.1186/s12943-019-0965-7

  46. Macanas-Pirard, P., Broekhuizen, R., Gonzáles, A., et al., Resistance of leukemia cells to cytarabine chemotherapy is mediated by bone marrow stroma, involves cell-surface equilibrative nucleoside transporter-1 removal and correlates with patient outcome, Oncotarget, 2017, vol. 8, no. 14, pp. 23073–23086.

    PubMed  PubMed Central  Google Scholar 

  47. Makishima, H., Visconte, V., Sakaguchi, H., et al., Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis, Blood, 2012, vol. 119, no. 14, pp. 3203–3210.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marquez, R.T. and Xu, L., Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch, Am. J. Cancer Res., 2012, vol. 2, no. 2, pp. 214–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martelli, A.M., Tazzari, P.L., Evangelisti, C., et al., Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside, Curr. Med. Chem., 2007, vol. 14, no. 19, pp. 2009–2023.

    CAS  PubMed  Google Scholar 

  50. McCormack, E., Haaland, I., Venås, G., et al., Synergistic induction of p53 mediated apoptosis by valproic acid and nutlin-3 in acute myeloid leukemia, Leukemia, 2012, vol. 26, no. 5, pp. 910–917.

    CAS  PubMed  Google Scholar 

  51. McLornan, D., Hay, J., McLaughlin, K., et al., Prognostic and therapeutic relevance of c-FLIP in acute myeloid leukaemia, Br. J. Haematol., 2012, vol. 160, no. 2, pp. 188–198.

    PubMed  Google Scholar 

  52. Milman, N., Ginini, L., and Gil, Z., Exosomes and their role in tumorigenesis and anticancer drug resistance, Drug Resist. Update, 2019, vol. 45, pp. 1–12.

    Google Scholar 

  53. Nawrocki, S.T., Han, Y., Visconte, V., et al., Development of ROC-325: a novel small molecule inhibitor of autophagy with promising anti-leukemic activity, Blood, 2016, vol. 128, no. 22, p. 525.

    Google Scholar 

  54. Pavlov, V.N., Rakhmatullina, I.R., Farkhutdinov, R.R., et al., Free radical oxidation and carcinogenesis: debatable issues, Creat. Surg. Oncol., 2017, vol. 7, no. 22, pp. 54–61.

    Google Scholar 

  55. Piya, S., Kornblau, S.M., Ruvolo, V.R., et al., Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia, Blood, 2016, vol. 128, no. 9, pp. 1260–1269.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Prokocimer, M. and Peller, S., Cytoplasmic sequestration of wild-type p53 in a patient with therapy-related resistant AML: first report, Med. Oncol., 2012, vol. 29, no. 2, pp. 1148–1150.

    PubMed  Google Scholar 

  57. Rotin, L.E., MacLean, N., Aman, A., et al., Erlotinib synergizes with the poly(ADP-ribose) glycohydrolase inhibitor ethacridine in acute myeloid leukemia cells, Haematologica, 2016, vol. 101, no. 11, p. e449–e453.

    PubMed  PubMed Central  Google Scholar 

  58. Qiu, L., Zhou, G., and Cao, S., Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia, Life Sci., 2020, vol. 243, p. 117234.

    CAS  PubMed  Google Scholar 

  59. Salunkhe, S., Mishra, S.V., Nair, J., et al., Inhibition of novel GCN5-ATM axis restricts the onset of acquired drug resistance in leukemia, Int. J. Cancer, 2018, vol. 142, no. 10, pp. 2175–2185.

    CAS  PubMed  Google Scholar 

  60. Savchenko, V.G., Parovichnikova, E.N., Afanas’ev, B.V., et al., National clinical guidelines for the diagnostics and treatment of acute myeloid leukemia in adults, Gematol. Transfuziol., 2014, vol. 59, suppl. 2.

  61. Schwind, S., Maharry, K., Radmacher, M.D., et al., Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study, J. Clin. Oncol., 2010, vol. 28, no. 36, pp. 5257–5264.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tabe, Y. and Konopleva, M., Advances in understanding the leukemia microenvironment, Br. J. Haematol., 2014, vol. 164, no. 6, pp. 767–778.

    PubMed  PubMed Central  Google Scholar 

  63. Tan, B.X., Khoo, K.H., Lim, T.M., and Lane, D.P., High Mdm4 levels suppress p53 activity and enhance its half-life in acute myeloid leukaemia, Oncotarget, 2014, vol. 5, no. 4, pp. 933–943.

    PubMed  Google Scholar 

  64. Tang, R., Cohen, S., Perrot, J.-Y., et al., P-gp activity is a critical resistance factor against AVE9633 and DM4 cytotoxicity in leukemia cell lines, but not a major mechanism of chemoresistance in cells from acute myeloid leukemia patients, BMC Cancer, 2009, vol. 9, p. 199.

    PubMed  PubMed Central  Google Scholar 

  65. Valdez, B.C., Murray, D., Nieto, Y., et al., Synergistic cytotoxicity of the DNA alkylating agent busulfan, nucleoside analogs and suberoylanilide hydroxamic acid in lymphoma cell lines, Leuk. Lymphoma, 2012, vol. 53, no. 5, pp. 973–981.

    CAS  PubMed  Google Scholar 

  66. Visconti, R. and Grieco, D., Fighting tubulin-targeting anticancer drug toxicity and resistance, Endocr.-Relat. Cancer, 2017, vol. 24, no. 9, pp. T107–T117.

    CAS  PubMed  Google Scholar 

  67. Wang, B., Wang, X., Hou, D., et al., Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysis-mediated vascular remodeling, J. Cell Physiol., 2019, vol. 234, no. 7, pp. 10602–10614.

    CAS  PubMed  Google Scholar 

  68. Wang, P., Ma, D., Wang, J., et al., INPP4B-mediated DNA repair pathway confers resistance to chemotherapy in acute myeloid leukemia, Tumor Biol., 2016, vol. 37, no. 9, pp. 12513–12523.

    CAS  Google Scholar 

  69. Watson, A.S., Riffelmacher, T., Stranks, A., et al., Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia, Cell Death Discovery, 2015, vol. 1, p. 15008.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wojtuszkiewicz, A., Schuurhuis, G.J., Kessler, F.L., et al., Exosomes secreted by apoptosis-resistant acute myeloid leukemia (AML) blasts harbor regulatory network proteins potentially involved in antagonism of apoptosis, Mol. Cell. Proteomics, 2016, vol. 15, no. 4, pp. 1281–1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wong, N.K., Huang, C.-L., Islam, R., and Yip, S.P., Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies, J. Hematol. Oncol., 2018, vol. 11, no. 1, p. 131.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, K., Xing, F., Wu, S.-Y., and Watabe, K., Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside, Biochim. Biophys. Acta, Rev. Cancer, 2017, vol. 1868, no. 2, pp. 538–563.

    CAS  Google Scholar 

  73. Yi, H., Zeng, D., Shen, Z., et al., Integrin alphavbeta3 enhances β-catenin signaling in acute myeloid leukemia harboring Fms-like tyrosine kinase-3 internal tandem duplication mutations: implications for microenvironment influence on sorafenib sensitivity, Oncotarget, 2016, vol. 7, no. 26, pp. 40387–40397.

    PubMed  PubMed Central  Google Scholar 

  74. Yonekawa, T. and Thorburn, A., Autophagy and cell death, Essays Biochem., 2013, vol. 55, pp. 105–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zachari, M. and Ganley, I.G., The mammalian ULK1 complex and autophagy initiation, Essays Biochem., 2017, vol. 61, no. 6, pp. 585–596.

    PubMed  PubMed Central  Google Scholar 

  76. Zheng, H.-C., The molecular mechanisms of chemoresistance in cancers, Oncotarget, 2017, vol. 8, no. 35, pp. 59950–59964.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Romanovskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrova, N.M., Romanovskaya, T.V. Mechanisms of Drug Resistance in Acute Myeloid Leukemia. Biol Bull Rev 11 (Suppl 1), 32–46 (2021). https://doi.org/10.1134/S2079086421070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421070021

Keywords:

Navigation