Skip to main content
Log in

Impact of Spatial Heterogeneity on Drosophila melanogaster Adaptation to Unfavourable Food Media: The Results of an Experimental Evolution Study

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The spatiotemporal variability of environmental conditions is assumed to have a strong impact on the course of microevolution processes, including the efficiency of adaptation to unfavourable conditions and the probability of ecological specialization or, conversely, generalization (the acquisition of multipurpose adaptations). The experimentаl research on these effects is still at the initial stage, and the temporal, rather than spatial, heterogeneity of the environment is analyzed in most studies. We performed an evolution experiment that involved the adaptation of Drosophila melanogaster lines to two unfavourable media: a high-salt (S) medium and a starch-based (St) medium of low nutritional value. Some of the experimental lines had access to one of the two unfavourable media only (homogeneous environment), whereas the others had access to both media and could choose between them (heterogeneous environment). The control lines were reared on a normal laboratory medium (N) that provided favourable conditions for the species. The degree of adaptation of lines obtained on the S, St, and N media was assessed after one and a half years of adaptation. The reproduction efficiency (the amount of adult progeny derived from a pair of parents within a specified time interval), adult lifespan, oviposition rate, and ageing-related changes in the former were assessed. Flies reared in a heterogeneous environment were superior to those reared in a homogeneous one with regard to most adaptation parameters on all three media. The results agree with the hypothesis concerning the promotion of generalization and more efficient adaptation to unfavourable conditions upon spatial heterogeneity of the environment. The obtained data do not support the hypothesis of antagonistic pleiotropy, which leads to “evolutionary trade-offs” and a lower competitiveness of generalists than that of specialists under stable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bell, G. and Reboud, X., Experimental evolution in Chlamydomonas. II. Genetic variation in strongly contrasted environments, Heredity, 1997, vol. 78, no. 5, pp. 498–506.

    Article  Google Scholar 

  2. Blum, J.E., Fischer, C.N., Miles, J., and Handelsman, J., Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster, mBio, 2013, vol. 4, p. e00860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, H. and Maklakov, A.A., Longer life span evolves under high rates of condition-dependent mortality, Curr. Biol., 2012, vol. 22, pp. 2140–2143.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, H. and Maklakov, A.A., Condition dependence of male mortality drives the evolution of sex differences in longevity, Curr. Biol., 2014, vol. 24, pp. 2423–2427.

    Article  CAS  PubMed  Google Scholar 

  5. Condon, C., Cooper, B.S., Yeaman, S., and Angilletta, M.J., Jr., Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster, Evolution, 2014, vol. 68, no. 3, pp. 720–728.

    Article  PubMed  Google Scholar 

  6. Cooper, V.S. and Lenski, R.E., The population genetics of ecological specialization in evolving Escherichia coli populations, Nature, 2000, vol. 407, pp. 736–739.

    Article  CAS  PubMed  Google Scholar 

  7. Dmitrieva, A.S., Ivnitsky, S.B., and Markov, A.V., Adaptation of Drosophila melanogaster to stressful nutritional conditions leads to the expansion of the trophic niche, Biol. Bull. Rev., 2017, vol. 7, no. 5, pp. 369–379.

    Article  Google Scholar 

  8. Duncan, A.B., Fellous, S., Quillery, E., and Kaltz, O., Adaptation of Paramecium caudatum to variable conditions of temperature stress, Res. Microbiol., 2011, vol. 162, pp. 939–944.

    Article  CAS  PubMed  Google Scholar 

  9. Erkosar, B., Storelli, G., Defaye, A., and Leulier, F., Host intestinal microbiota mutualism: “learning on the fly,” Cell Host Microbe, 2013, vol. 13, pp. 8–14.

    Article  CAS  PubMed  Google Scholar 

  10. Futuyma, D.J. and Moreno, G., The evolution of ecological specialization, Ann. Rev. Ecol. Syst., 1988, vol. 19, pp. 207–233.

    Article  Google Scholar 

  11. Gillespie, J.H. and Turelli, M., Genotype-environment interactions and the maintenance of polygenic variation, Genetics, 1989, vol. 121, no. 1, pp. 129–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hamilton, W.D., The molding of senescence by natural selection, J. Theor. Biol., 1966, vol. 12, pp. 12–45.

    Article  CAS  Google Scholar 

  13. Hughes, B.S., Cullum, A.J., and Bennett, A.F., An experimental evolutionary study on adaptation to temporally fluctuating pH in Escherichia coli, Physiol. Biochem. Zool., 2007, vol. 80, pp. 406–421.

    Article  CAS  PubMed  Google Scholar 

  14. Kassen, R., The experimental evolution of specialists, generalists, and the maintenance of diversity, J. Evol. Biol., 2002, vol. 15, no. 2, pp. 173–190.

  15. Kassen, R. and Bell, G., Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales, Heredity, 1998, vol. 80, no. 6, pp. 732–741.

    Article  Google Scholar 

  16. Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M.C., Experimental evolution, Trends Ecol. Evol., 2012, vol. 27, no. 10, pp. 547–560.

    Article  PubMed  Google Scholar 

  17. Ketola, T., Mikonranta, L., Zhang, J., Saarinen, K., Ormala, A.M., Friman, V.P., Mappes, J., and Laakso, J., Fluctuating temperature leads to evolution of thermal generalism and pre-adaptation to novel environments, Evolution, 2013, vol. 67, no. 10, pp. 2936–2944.

    PubMed  Google Scholar 

  18. Kirkwood, T.B.L., Evolution of ageing, Nature, 1977, vol. 270, pp. 301–304.

    Article  CAS  Google Scholar 

  19. Kirkwood, T.B.L. and Rose, M.R., Evolution of senescence: late survival sacrificed for reproduction, Philos. Trans. R. Soc., B, 1991, vol. 332, pp. 15–24.

  20. Kneitel, J.M. and Chase, J.M., Trade-offs in community ecology: linking spatial scales and species coexistence, Ecol. Lett., 2004, vol. 7, no. 1, pp. 69–80.

    Article  Google Scholar 

  21. Kreslavskii, A.G., Sympatric speciation in animals: disruptive selection or ecological segregation? Zh. Obshch. Biol., 1994, vol. 55, nos. 4–5, pp. 404–419.

  22. Legros, M. and Koella, J.C., Experimental evolution of specialization by a microsporidian parasite, BMC Evol. Biol., 2010, vol. 10, pp. 159–165.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levene, H., Genetic equilibrium when more than one ecological niche is available, Am. Nat., 1953, vol. 87, no. 836, pp. 331–333.

    Article  Google Scholar 

  24. Long, T.A.F., Rowe, L., and Agrawal, A.F., The effects of selective history and environmental heterogeneity on inbreeding depression in experimental populations of Drosophila melanogaster, Am. Nat., 2013, vol. 4, pp. 532–534.

    Article  Google Scholar 

  25. Lynch, M. and Gabriel, W., Environmental tolerance, Am. Nat., 1987, vol. 129, pp. 283–303.

    Article  Google Scholar 

  26. Margulis, L. and Fester, R., Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis, Boston: MIT Press, 1991.

    Google Scholar 

  27. Markov, A.V. and Ivnitsky, S.B., Evolutionary role of phenotypic plasticity, Moscow Univ. Biol. Sci. Bull., 2016, vol. 71, no. 4, pp. 185–192.

    Article  Google Scholar 

  28. Markov, A.V., Ivnitsky, S.B., Kornilova, M.B., Naimark, E.B., Shirokova, N.G., and Perfilieva, K.S., Maternal effect obscures adaptation to adverse environments and hinders divergence in Drosophila melanogaster, Biol. Bull. Rev., 2016a, vol. 6, no. 5, pp. 429–435.

    Article  Google Scholar 

  29. Markov, A.V., Naimark, E.B., and Yakovleva, E.U., Temporal scaling of age-dependent mortality: Dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable, Biochemistry (Moscow), 2016b, vol. 81, no. 8, pp. 906–911.

  30. Medawar, P.B., An Unsolved Problem of Biology, London: H.K. Lewis, 1952.

    Google Scholar 

  31. Ostrowski, E.A., Ofria, C., and Lenski, R.E., Ecological specialization and adaptive decay in digital organisms, Am. Nat., 2007, vol. 169, no. 1, pp. E1–E20.

    Article  PubMed  Google Scholar 

  32. Panchenko, P.L., Kornilova, M.B., Perfilieva, K.S., and Markov, A.V., Contribution of symbiotic microbiota to adaptation of Drosophila melanogaster to an unfavorable growth medium, Biol. Bull., 2017, vol. 44, no. 4, pp. 345–354.

    Article  CAS  Google Scholar 

  33. Reboud, X. and Bell, G., Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time, Heredity, 1997, vol. 78, no. 5, pp. 507–514.

    Article  Google Scholar 

  34. Remold, S., Understanding specialism when the Jack of all trades can be the master of all, Proc. R. Soc. London, Ser. B, 2012, vol. 279, pp. 4861–4869.

    Article  Google Scholar 

  35. Rose, M., Evolutionary Biology of Aging, Oxford: Oxford Univ. Press, 1991.

    Google Scholar 

  36. Rundle, H.D. and Nosil, P., Ecological speciation, Ecol. Lett., 2005, vol. 8, pp. 336–352.

    Article  Google Scholar 

  37. Shin, S.C., Kim, S.H., You, H., Kim, B., Kim, A.C., Lee, K.A., Yoon, J.H., Ryu, J.H., and Lee, W.J., Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling, Science, 2011, vol. 334, pp. 670–674.

    Article  CAS  PubMed  Google Scholar 

  38. Stearns, S.C., Ackermann, M., Doebeli, M., and Kaiser, M., Experimental evolution of aging, growth, and reproduction in fruitflies, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 3309–3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Storelli, G., Defaye, A., Erkosar, B., Hols, P., Royet, J., and Leulier, F., Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing, Cell Metab., 2011, vol. 14, pp. 403–414.

    Article  CAS  PubMed  Google Scholar 

  40. Via, S. and Lande, R., Genotype-environment interaction and the evolution of phenotypic plasticity, Evolution, 1985, vol. 39, no. 3, pp. 505–522.

    Article  PubMed  Google Scholar 

  41. Via, S. and Lande, R., Evolution of genetic variability in a spatially heterogeneous environment: effects of genotype–environment interaction, Genet. Res., 1987, vol. 49, no. 2, pp. 147–156.

    Article  CAS  PubMed  Google Scholar 

  42. Weaver, S.C., Brault, A.C., Kang, W., and Holland, J.J., Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells, J. Virol., 1999, vol. 73, no. 5, pp. 4316–4326.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Williams, G.C., Pleiotropy, natural selection, and the evolution of senescence, Evolution, 1957, vol. 11, pp. 398–411.

    Article  Google Scholar 

  44. Williams, P.D. and Day, T., Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence, Evolution, 2003, vol. 57, pp. 1478–1488.

    Article  PubMed  Google Scholar 

  45. Yakovleva, E.U., Naimark, E.B., and Markov, A.V., Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity, Biochemistry (Moscow), 2016, vol. 81, no. 12, pp. 1445–1460.

  46. Zilber-Rosenberg, I. and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 2008, vol. 32, pp. 723–735.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. U. Yakovleva.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkova, A.A., Fetisova, E.S., Yakovleva, E.U. et al. Impact of Spatial Heterogeneity on Drosophila melanogaster Adaptation to Unfavourable Food Media: The Results of an Experimental Evolution Study. Biol Bull Rev 9, 29–41 (2019). https://doi.org/10.1134/S207908641901002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641901002X

Navigation