Skip to main content
Log in

Disadaptive Disorders of Regulation of Functions with Aging

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

This review examines the basic theories of aging, which show the irreversibility of this process that leads to the death of cells and the body. The hypotheses of phenoptosis and apoptosis are discussed, as well as the view that disadaptation initiates free radical oxidation reactions and violates the neurohumoral regulation of functions. The review briefly examines the mechanisms of the development of age-related diseases. The hypothesis that partial adaptation and disadaptation are transitional biological processes associated with aging is proposed. A regularity that manifests itself in a reduction of the functional activity of an organ and cell metabolism in the state of disadaptation and aging (the principle of the limitation of cellular metabolism) is described. The study shows that aging leads to the progression of homeostatic disorders and changes in DNA methylation processes. The problem of the use of antioxidants, endogenous peptides, telomerase, and ozone to prevent the negative effects of oxidative stress on biomolecules and cellular structures is considered. It was proposed that the biosynthesis of biogenic amines significantly decreases during disadaptation and aging, which entails a decrease in the regulatory control of biochemical reactions by the hypothalamic-pituitary system. It is proposed that biogenic amines and their derivatives be considered substances that minimize the dysregulatory processes that reduce disadaptive manifestations in the body, stimulate cellular metabolism, and slow the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Akasheva, D.U., Strazhesko, I.D., Dudinskaya, E.N., et al., Heart and age: theory of aging and morphological changes, Part 1, Kardiovask. Ter. Prof., 2013, no. 12 (1), pp. 88–94.

  2. Anisimov, V.N. and Khavinson, V.Kh., The use of peptide regulators for cancer prevention: the results of 35-year studies and prospects, Vopr. Onkol., 2009, vol. 55, no. 3, pp. 291–304.

    CAS  PubMed  Google Scholar 

  3. Artemenkov, A.A., Maladaptation as a factor of evolutionary development in human populations, Nauchn. Obozr., 2017, no. 1, pp. 5–16.

  4. Artemenkov, A.A., The maximum performance of cortical neurons in the conditions of the development of a dynamic stereotype and with extreme physical loads, Ekstrem. Deyat. Chel., 2017, no. 2, pp. 74–78.

  5. Artemenkov, A.A., Ecological and hygienic aspects of non-infectious morbidity in the adults of a large industrial city, Zdorov’e Naseleniya Sreda Obitaniya, 2017, no. 4, pp. 7–10.

  6. Artemenkov, A.A., General biological approaches to the systemic organization of borderline states of mental maladaptation, Nauchn. Obozr., Med. Nauki, 2017, no. 5, pp. 10–16.

  7. Artemenkov, A.A., Dezadaptivnye narusheniya u cheloveka i ikh kompensatsiya (Maladaptive Human Disorders and Their Compensation), Cherepovets: Cherepovets. Gos. Univ., 2018.

  8. Arutyunyan, A.V. and Kozina, L.S., Mechanisms and role of free radical oxidation, Usp. Gerontol., 2009, vol. 22, no. 1, pp. 104–116.

    Google Scholar 

  9. Aslanidi, K.B. and Myakisheva, S.N., The influence of medium components on the differentiation period and the life expectancy of the mouse neuroblastoma cells NIE-115, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2011, vol. 5, no. 2, pp. 143–152.

    Google Scholar 

  10. Ashapkin, V.V., Linkova, N.S., Khavinson, V.K., and Vanyushin, B.F., Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells, Biochemistry (Moscow), 2015, vol. 80, no. 3, pp. 310–322.

    CAS  PubMed  Google Scholar 

  11. Ashapkin, V.V., Kutueva, L.I., and Vanyushin, B.F., Aging epigenetics: accumulation of errors or realization of a specific program?, Biochemistry (Moscow), 2016, vol. 80, no. 11, pp. 1406–1417.

    Google Scholar 

  12. Boiko, A.G., Differentiation of radial glia cells into astrocytes is a possible ageing, Zh. Obshch. Biol., 2007, vol. 68, no. 1, pp. 35–51.

    CAS  PubMed  Google Scholar 

  13. Borodulin, V.B., Biochemical principles of unified theory of aging, Part 1: Generals statements, Usp. Gerontol., 2008, vol. 21, no. 4, pp. 535–545.

    CAS  Google Scholar 

  14. Weisman, N.Ya., Golubovsky, M.D., Zenkov, N.K., Menshchikova, E.B., and Pashin, V.N., Variability of the antioxidant effect on survival: modeling in Drosophila lines with different lifespan and l(2)gl-tumor suppressor dosage, Biol. Bull. (Moscow), 2010, vol. 37, no. 3, pp. 246–253.

    Article  CAS  Google Scholar 

  15. Voronina, T.A., The role of oxidative stress and antioxidants in various maladaptations, Farm. Farmakol., 2015, no. 5, pp. 8–17.

  16. Goldsmith, T.C., Arguments against non-programmed aging theories, Biochemistry (Moscow), 2013, vol. 78, no. 9, pp. 971–978.

    CAS  PubMed  Google Scholar 

  17. Dubinskaya, V.A., Ontogenesis and modern theories of aging: a literature review, Vopr. Biol., Med. Farm. Khim., 2015, no. 10, pp. 26–36.

  18. Evzel’man, M.A. and Aleksandrova, N.A., Cognitive disorders related with physiological aging, Uch. Zap. Orlovsk. Gos. Univ., Ser. Estestv., Tekh. Med. Nauki, 2009, no. 4, pp. 80–82.

  19. Ivanov, S.V. and Kostoglodov, Yu.K., Morphological and chronoepidemiological basis for lunasensory pineal gland function in the context of the redumer hypothesis of aging, Adv. Gerontol., 2011. vol. 1, no. 3, pp. 220–222.

    Article  Google Scholar 

  20. Isaev, N.K., Stelmashook, E.V., Genrikhs, E.E., Oborina, M.V., Kapkaeva, M.R., and Skulachev, V.P., Alzheimer’s disease: an exacerbation of senile phenoptosis, Biochemistry (Moscow), 2015, vol. 80, no. 12, pp. 1578–1581.

    CAS  PubMed  Google Scholar 

  21. Katcher, H.L., Studies that shed new light on aging, Biochemistry (Moscow), 2013, vol. 78, no. 9, pp. 1061–1070.

    CAS  PubMed  Google Scholar 

  22. Kornievskii, A.V. and Arutyunyan, A.V., On the role of biogenic amines and reactive oxygen species in the disruption of the hypothalamic regulation of reproductive function in xenobiotic-induced and experimental hyperhomocysteinemia, Neurochem. J., 2016, vol. 10, no. 1, pp. 19–25.

    Article  CAS  Google Scholar 

  23. Libertini, G., Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay), Biochemistry (Moscow), 2013, vol. 78, no. 9, pp. 1023–1032.

    CAS  PubMed  Google Scholar 

  24. Libertini, G., Phylogeny of aging and related phenoptotic phenomena, Biochemistry (Moscow), 2015, vol. 80, no. 12, pp. 1529–1546.

    CAS  PubMed  Google Scholar 

  25. Loshchenova, P.S., Sinitsyna, O.I., Fedoseeva, L.A., Stefanova, N.A., and Kolosova, N.G., Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats, Biochemistry (Moscow), 2015, vol. 80, no. 5, pp. 596–603.

    CAS  PubMed  Google Scholar 

  26. Lushchak, V.I., Free radical oxidation of proteins and its relationship with functional state of organisms, Biochemistry (Moscow), 2007, vol. 72, no. 8, pp. 809–827.

    CAS  PubMed  Google Scholar 

  27. Meshchaninov, V.N., Gavrilov, I.V., Tkachenko, E.L., et al., Use of cell-oriented metabolites for correction of biological age, Vestn. Ural. Med. Akad. Nauk, 2013, no. 4, pp. 94–97.

  28. Mitteldorf, J.J. and Goodnight, C., Post-reproductive life span and demographic stability, Biochemistry (Moscow), 2013, vol. 78, no. 9, pp. 1013–1022.

    CAS  PubMed  Google Scholar 

  29. Mitteldorf, J.J., Telomere biology: cancer firewall or aging clock?, Biochemistry (Moscow), 2013, vol. 78, no. 9, pp. 1054–1060.

    CAS  PubMed  Google Scholar 

  30. Moskalev, A.A., Evolutionary ideas on the nature of aging, Adv. Gerontol., 2011, vol. 1, no. 2, pp. 112–121.

    Article  Google Scholar 

  31. Parkhitko, A.A., Favorova, O.O., Khabibullin, D.I., Anisimov, V.N., and Henske, E.P., Kinase mTOR: Regulation and role in maintenance of cellular homeostasis, tumor development, and aging, Biochemistry (Moscow), 2014, vol. 79, no. 2, pp. 88–101.

    CAS  PubMed  Google Scholar 

  32. Pisaruk, A.V., Ontogenetic clock: molecular-genetic mechanism, Adv. Gerontol., 2011, vol. 1, no. 3, pp. 212–219.

    Article  Google Scholar 

  33. Popov, I.Yu., Aging of species: a fact or illusion?, Usp. Gerontol., 2008, vol. 21, no. 2, pp. 181–194.

    Google Scholar 

  34. Safwat, M.H., El-Sawalhi, M.M., Mausouf, M.N., and Shaheen, A.A., Ozone ameliorates age-related oxidative stress changes in rat liver and kidney: effects of pre- and post-ageing administration, Biochemistry (Moscow), 2014, vol. 79, no. 5, pp. 450–458.

    CAS  PubMed  Google Scholar 

  35. Skulachev, M.V. and Skulachev, V.P., New data on programmed aging—slow phenoptosis, Biochemistry (Moscow), 2014, vol. 79, no. 10, pp. 977–993.

    CAS  PubMed  Google Scholar 

  36. Skulachev, M.V., Severin, F.F., and Skulachev, V.P., Receptor regulation of senile phenoptosis, Biochemistry (Moscow), 2014, vol. 79, no. 10, pp. 1225–1236.

    Google Scholar 

  37. Khavinson, V.Kh. and Anisimov, V.N., 35-Years experience in peptide regulation of aging, Usp. Gerontol., 2009, vol. 22, no. 1, pp. 11–23.

    Google Scholar 

  38. Khavinson, V.K., Solov’ev, A.Yu., Zhilinskii, D.V., Shataeva, L.K., and Vanyushin, B.F., Epigenetic aspects of peptide-mediated regulation of aging, Adv. Gerontol., 2012, vol. 2, no. 4, pp. 277–286.

    Article  Google Scholar 

  39. Khalyavkin, A.V. and Krutko, V.N., Aging is a simple deprivation syndrome driven by a quasi-programmed preventable and reversible drift of control system set points due to inappropriate organism-environment interaction, Biochemistry (Moscow), 2014, vol. 79, no. 10, pp. 1133–1135.

    CAS  PubMed  Google Scholar 

  40. Khalyavkin, A.V. and Krut’ko, V.N., Early thymus involution—manifestation of an aging program or a program of development?, Biochemistry (Moscow), 2015, vol. 80, no. 12, pp. 1622–1625.

    CAS  PubMed  Google Scholar 

  41. Shilovsky, G.A., Feniouk, B.A., and Skulachev, V.P., Thymic involution in ontogenesis: Role in aging program, Biochemistry (Moscow), 2015, vol. 80, no. 12, pp. 1629–1631.

    CAS  PubMed  Google Scholar 

  42. Bernhart, E., Kogelnik, N., Prasch, J., et al., 2-Chlo- rohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells, Redox Biol., 2018, vol. 15, pp. 441–451. https://doi.org/10.1016/j.redox.2018.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang, S.C., Crous-Bou, M., Prescott, J., et al., Relation of long-term patterns in caregiving activity and depressive symptoms to telomere length in older women, Psychoneuroendocrinology, 2018, vol. 89, pp. 161–167. https://doi.org/10.1016/j.psyneuen.2018.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen, J., Zou, Q., Lv, D., et al., Comprehensive transcriptional landscape of porcine cardiac and skeletal muscles reveals differences of aging, Oncotarget, 2017, vol. 9, no. 2, pp. 1524–1541. https://doi.org/10.18632/oncotarget.23290

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chinta, S.J., Woods, G., Demaria, M., et al., Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease, Cell Rep., 2018, vol. 22, no. 4, pp. 930–940. https://doi.org/10.1016/j.celrep.2017.12.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung, E., Mo, H., Wang, S., et al., Potential roles of vitamin E in age-related changes in skeletal muscle health, Nutr. Res., 2018, vol. 49, pp. 23–36. https://doi.org/10.1016/j.nutres.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Fuster, J.J. and Walsh, K., Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease, Circ. Res., 2018, vol. 122, no. 3, pp. 523–532. https://doi.org/10.1161/CIRCRESAHA.117.312115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, J., Vitiello, M.V., and Gooneratne, N.S., Sleep in normal aging, Sleep Med. Clin., 2018, vol. 13, no. 1, pp. 1–11. https://doi.org/10.1016/j.jsmc.2017.09.001

    Article  PubMed  Google Scholar 

  49. Ma, T.J., Lan, D.H., He, S.Z., et al., Nrf2 protects human lens epithelial cells against H2O2-induced oxidative and ER stress: the ATF4 may be involved, Exp. Eye Res., 2018, vol. 169, pp. 28–37. https://doi.org/10.1016/j.exer.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  50. Ntsapi, C., Lumkwana, D., Swart, C., et al., New insights into autophagy dysfunction related to amyloid beta toxicity and neuropathology in Alzheimer’s disease, Int. Rev. Cell Mol. Biol., 2018, vol. 336, pp. 321–361. https://doi.org/10.1016/bs.ircmb.2017.07.002

    Article  PubMed  Google Scholar 

  51. Robijns, J., Houthaeve, G., Braeckmans, K., et al., Loss of nuclear envelope integrity in aging and disease, Int. Rev. Cell Mol. Biol., 2018, vol. 336, pp. 205–222. https://doi.org/10.1016/bs.ircmb.2017.07.013

    Article  PubMed  Google Scholar 

  52. Strasser, B., Volaklis, K., Fuchs, D., and Burtscher, M., Role of dietary protein and muscular fitness on longevity and aging, Aging Dis., 2018, vol. 9, no. 1, pp. 119–132. https://doi.org/10.14336/AD.2017.0202

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tavakoli Shirazi, P., Leifert, W.R., Fenech, M.F., and François, M., Folate modulates guanine-quadruplex frequency and DNA damage in Werner syndrome, Mutat. Res., 2018, vol. 826, pp. 47–52. https://doi.org/10.1016/j.mrgentox.2017.12.002

    Article  CAS  Google Scholar 

  54. Yang, J., Qin, Y., Zhang, T., et al., Identification of human age-associated gene co-expressions in functional modules using liquid association, Oncotarget, 2017, vol. 9, no. 1, pp. 1063–1074. https://doi.org/10.18632/oncotarget.23148

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Artemenkov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemenkov, A.A. Disadaptive Disorders of Regulation of Functions with Aging. Adv Gerontol 9, 197–206 (2019). https://doi.org/10.1134/S2079057019020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057019020024

Keywords:

Navigation