Skip to main content
Log in

Molecular mechanisms of cell death in retina during development of age-related macular degeneration

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is a chronic progressive disease characterized by damage to the central retina zone. Changes in choriocapillaries, retinal pigment epithelium (RPE), and Bruch’s membrane (typical for aging) underlie AMD pathogenesis; however, the mechanisms launching the transfer of typical age-related changes in the pathological process are unknown. The death of photoreceptors and irreversible loss of vision become the results of pathological changes in RPE and choroid. In spite of intensive studies of AMD pathogenesis, information on molecular genetic preconditions of the events leading to the death of photoreceptors (as well as about the pathways of their death) is extremely limited; this complicates the search for efficient methods of AMD treatment (first of all, the most widely spread atrophic (“dry”) form of the disease). Recent studies demonstrated that not only apoptotic but also autophagic and necrotic signaling cascades are involved in the cellular death of retinal cells. The published data on three main forms of the programmed cell death (apoptosis, necrosis, and autophagy) and their role in AMD pathogenesis are summarized in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akpek, E.K. and Smith, R.A., Overview of age-related ocular conditions, Am. J. Managed Care, 2013, vol. 19, no. 5, pp. s67–s75.

    Google Scholar 

  2. Ardeljan, D. and Chan, C.C., Aging is not a disease: distinguishing age-related macular degeneration from aging, Progr. Retinal Eye Res., 2013, vol. 37, pp. 68–89.

    Article  CAS  Google Scholar 

  3. Arango-Gonzalez, B., Trifunovic, D., Sahaboglu, A., et al., Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration, PloS One, 2014, vol. 9, no. 11, p. e112142.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ashkenazi, A. and Salvesen, G., Regulated cell death: signaling and mechanisms, Ann. Rev. Cell Dev. Biol., 2014, vol. 30, pp. 337–356.

    Article  CAS  Google Scholar 

  5. Blasiak, J., Petrovski, G., Veréb, Z., et al., Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration, BioMed Res. Int., 2014, art. ID 768026.

    Google Scholar 

  6. Cai, Z., Jitkaew, S., Zhao, J., et al., Plasma membrane translocation of trimerised MLKL protein is required for TNF-induced necroptosis, Nat. Cell Biol., 2014, vol. 16, no. 1, pp. 55–65.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, X., Li, W., Ren, J., et al., Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death, Cell Res., 2014, vol. 24, no. 1, pp. 105–121.

    Article  CAS  PubMed  Google Scholar 

  8. Choudhury, J.D., Kumar, S., Mayank, V., et al., A review on apoptosis and its different pathway, Int. J. Biol. Pharmacol. Res., 2012, vol. 3, pp. 848–861.

    Google Scholar 

  9. Cuervo, A.M. and Wong, E., Chaperone-mediated autophagy: roles in disease and aging, Cell Res., 2014, vol. 24, no. 1, pp. 92–104.

    Article  CAS  PubMed  Google Scholar 

  10. Curcio, C.A., Medeiros, N.E., and Millican, C.L., Photoreceptor loss in age-related macular degeneration, Invest. Ophthalmol. Visual. Sci., 1996, vol. 37, no. 7, pp. 1236–1249.

    CAS  Google Scholar 

  11. Curcio, C.A., Photoreceptor topography in ageing and age-related maculopathy, Eye, 2001, vol. 15, no. 3, pp. 376–383.

    Article  CAS  PubMed  Google Scholar 

  12. Degterev, A., Huang, Z., Boyce, M., et al., Addendum: chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat. Chem. Biol., 2013, vol. 9, no. 3, pp. 192–192.

    Article  Google Scholar 

  13. Dong, K. and Sun, X., Targeting death receptor induced apoptosis and necroptosis: a novel therapeutic strategy to prevent neuronal damage in retinal detachment, Med. Hypotheses, 2011, vol. 77, no. 1, pp. 144–146.

    Article  CAS  PubMed  Google Scholar 

  14. Don, K., Zhu, H., Song, Z., et al., Necrostatin-1 protects photoreceptors from cell death and improves functional outcome after experimental retinal detachment, Am. J. Pathol., 2012, vol. 181, pp. 1634–1641.

    Article  Google Scholar 

  15. Dong, K., Zhu, Z.C., Wang, F.H., et al., Activation of autophagy in photoreceptor necroptosis after experimental retinal detachment, Int. J. Ophthalmol., 2014, vol. 7, pp.745.

    PubMed  PubMed Central  Google Scholar 

  16. Doonan, F., Groeger, G., and Cotter, T.G., Preventing retinal apoptosis—is there a common therapeutic theme? Exp. Cell Res., 2012, vol. 318, pp. 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  17. Dunaief, J.L., Dentchev, T., Ying, G.S., and Milam, A.H., The role of apoptosis in age-related macular degeneration, Arch. Ophthalmol., 2002, vol. 120, pp. 1435–1442.

    Article  PubMed  Google Scholar 

  18. Dvoriantchikova, G., Degterev, A., and Ivanov, D., Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia–reperfusion-induced retinal damage, Exp. Eye Res., 2014, vol. 123, pp. 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feoktistova, M. and Leverkus, M., Programmed necrosis and necroptosis signaling, FEBS J., 2015, vol. 282, pp. 19–31.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrington, D.A., Sinha, D., and Kaarniranta, K., Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration, Progr. Retinal Eye Res., 2015, vol. 51, pp. 69–89.

    Article  Google Scholar 

  21. Gao, S., Andreeva, K., and Cooper, N.G., Ischemiareperfusion injury of the retina is linked to necroptosis via the ERK1/2-RIP3 pathway, Mol. Vision, 2014, vol. 20, p. 1374.

    Google Scholar 

  22. German, O.L., Agnolazza, D.L., Politi, L.E., and Rotstein, N.P., Light, lipids and photoreceptor survival: live or let die? Photochem. Photobiol. Sci., 2015, vol. 14, pp. 1737–1753.

    Article  CAS  PubMed  Google Scholar 

  23. Hadziahmetovic, M., Dentchev, T., Song, Y., et al., Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD, Invest. Ophthalmol. Visual Sci., 2008, vol. 49, p. 2728.

    Article  Google Scholar 

  24. Hahn, P., Qian, Y., Dentchev, T., et al., Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 13850–13855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Halaby, R., Does apoptosis regulate the function of retinal photoreceptors? Med. Hypothesis, Discovery Innovation Ophthalmol. J., 2012, vol. 1, no. 2, pp.21.

    Google Scholar 

  26. Hanus, J., Zhang, H., Wang, Z., et al., Induction of necrotic cell death by oxidative stress in retinal pigment epithelial cells, Cell Death Dis., 2013, vol. 4, p. e965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanus, J., Anderson, C., and Wang, S., RPE necroptosis in response to oxidative stress and in AMD, Ageing Res. Rev., 2015, vol. 24, pp. 286–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hisatomi, T., Sakamoto, T., Murata, T., et al., Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo, Am. J. Pathol., 2001, vol. 158, no. 4, pp. 1271–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horie-Inoue, K. and Inoue, S., Genomic aspects of age-related macular degeneration, Biochem. Biophys. Res. Commun., 2014, vol. 452, no. 2, pp. 263–275.

    Article  CAS  PubMed  Google Scholar 

  30. Khan, M., Agarwal, K., Loutfi, M., and Kamal, A., Present and possible therapies for age-related macular degeneration, ISRN Ophthalmol., 2014, art. ID 608390.

    Google Scholar 

  31. Khan, N., Lawlor, K.E., Murphy, J.M., and Vince, J.E., More to life than death: molecular determinants of necroptotic and nonnecroptotic RIP3 kinase signaling, Curr. Opin. Immunol., 2014, vol. 26, pp. 76–89.

    Article  CAS  PubMed  Google Scholar 

  32. Kivinen, N., Hyttinen, J.M., Viiri, J., et al., Hsp70 binds reversibly to proteasome inhibitor-induced protein aggregates and evades autophagic clearance in ARPE-19 cells, J. Biochem. Pharmacol. Res., 2014, vol. 2, pp. 1–7.

    Google Scholar 

  33. Klettner, A., Kauppinen, A., Blasiak, J., et al., Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization, Int. J. Biochem. Cell Biol., 2013, vol. 45, no. 7, pp. 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  34. Kumar, S. and Fu, Y., Age related macular degeneration: a complex pathology, Austin J. Genet. Genomic Res., 2014, vol. 1, pp.5.

    Google Scholar 

  35. Lapierre, L.R., Kumsta, C., Sandri, M., et al., Transcriptional and epigenetic regulation of autophagy in aging, Autophagy, 2015, vol. 11, no. 6, pp. 867–880.

    Article  PubMed  PubMed Central  Google Scholar 

  36. LaVail, M.M., Gorrin, G.M., Yasumura, D., and Matthes, M.T., Increased susceptibility to constant light in nr and pcd mice with inherited retinal degenerations, Invest. Ophthalmol. Visual Sci., 1999, vol. 40, pp. 1020–1024.

    CAS  Google Scholar 

  37. Lavrik, I.N., Systems biology of death receptor networks: live and let die, Cell Death Dis., 2014, vol. 5, no. 5, p. e1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, F., Cao, W., and Anderson, R.E., Alleviation of constant light-induced photoreceptor degeneration by adaptation of adult albino rat to bright cyclic light, Invest. Ophthalmol. Visual Sci., 2003, vol. 44, pp. 4968–4975.

    Article  Google Scholar 

  39. Li, W., Yang, Q., and Mao, Z., Chaperone-mediated autophagy: machinery, regulation and biological consequences, Cell. Mol. Life Sci., 2011, vol. 68, pp. 749–763.

    Article  CAS  PubMed  Google Scholar 

  40. Li, W.W., Li, J., and Bao, J.K., Microautophagy: lesserknown self-eating, Cell. Mol. Life Sci., 2012, vol. 69, pp. 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  41. Li, W., Phagocyte dysfunction, tissue aging and degeneration, Ageing Res. Rev., 2013, vol. 12, no. 4, pp. 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  42. Liang X., Chen, Y., Zhang, L., et al., Necroptosis, a novel form of caspase-independent cell death, contributes to renal epithelial cell damage in an ATP-depleted renal ischemia model, Mol. Med. Rep., 2014, vol. 10, pp. 719–724.

    CAS  PubMed  Google Scholar 

  43. Lohr, H.R., Kuntchithapautham, K., Sharma, A.K., and Rohrer, B., Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death, Exp. Eye Res., 2006, vol. 83, pp. 380–389.

    Article  CAS  PubMed  Google Scholar 

  44. Maeda, H., Ogata, N., Yi, X., et al., Apoptosis of photoreceptor cells in ornithine-induced retinopathy, Graefe’s Arch. Clin. Exp. Ophthalmol., 1998, vol. 236, pp. 207–212.

    Article  CAS  Google Scholar 

  45. Marigo, V., Programmed cell death in retinal degeneration: targeting apoptosis in photoreceptors as potential therapy for retinal degeneration, Cell Cycle, 2007, vol. 6, pp. 652–655.

    Article  CAS  PubMed  Google Scholar 

  46. Martinou, J.C. and Youle, R.J., Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics, Dev. Cell, 2011, vol. 21, no. 1, pp. 92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mitter, S.K., Song, C., Qi, X., et al., Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD, Autophagy, 2014, vol. 10, pp. 1989–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mizushima, N. and Komatsu, M., Autophagy: renovation of cells and tissues, Cell, 2011, vol. 147, pp. 728–741.

    Article  CAS  PubMed  Google Scholar 

  49. Murakami, Y., Notomi, S., Hisatomi, T., et al., Photoreceptor cell death and rescue in retinal detachment and degenerations, Progr. Retinal Eye Res., 2013, vol. 37, pp. 114–140.

    Article  Google Scholar 

  50. Murakami, Y., Matsumoto, H., Roh, M., et al., Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration, Cell Death Differ., 2014, vol. 21, pp. 270–277.

    CAS  Google Scholar 

  51. Noda, N.N. and Inagaki, F., Mechanisms of autophagy, Ann. Rev. Biophys., 2015, vol. 44, pp. 101–122.

    Article  CAS  Google Scholar 

  52. Organisciak, D.T. and Vaughan, D.K., Retinal light damage: mechanisms and protection, Progr. Retinal Eye Res., 2010, vol. 29, pp. 113–134.

    Article  Google Scholar 

  53. Remé, C.E., Grimm, C., Hafezi, F., et al., Apoptotic cell death in retinal degenerations, Progr. Retinal Eye Res., 1998, vol. 17, pp. 443–464.

    Article  Google Scholar 

  54. Remé, C.E., Grimm, C., Hafezi, F., et al., Apoptosis in the retina: the silent death of vision, Physiology, 2000, vol. 15, pp. 120–124.

    Google Scholar 

  55. Remé, C.E., Grimm, C., Hafezi, F., et al., Why study rod cell death in retinal degenerations and how? Doc. Ophthalmol., 2003, vol. 106, pp. 25–29.

    Article  PubMed  Google Scholar 

  56. Rickman, C.B., Farsiu, S., Toth, C.A., and Klingeborn, M., Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging, Invest. Ophthalmol. Visual Sci., 2013, vol. 54, no. 14, pp. ORSF68.

    Google Scholar 

  57. Rodríguez-Muela, N., Koga, H., García-Ledo, L., et al., Balance between autophagic pathways preserves retinal homeostasis, Aging Cell, 2013, vol. 12, pp. 478–488.

    Article  PubMed  Google Scholar 

  58. Sahu, R., Kaushik, S., Clement, C.C., et al., Microautophagy of cytosolic proteins by late endosomes, Dev. Cell, 2011, vol. 20, pp. 131–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shimizu, S., Yoshida, T., Tsujioka, M., and Arakawa, S., Autophagic cell death and cancer, Int. J. Mol. Sci., 2014, vol. 15, pp. 3145–3153.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Singh, N. and Bose, K., Apoptosis: pathways, molecules, and beyond, in Proteases in Apoptosis: Pathways, Protocols, and Translational Advances, New York: Springer-Verlag, 2015, pp. 1–30.

    Google Scholar 

  61. Szaboa, D.J., Toth, M., Doro, Z., et al., Cell death, clearance and inflammation: molecular crossroads and gene polymorphisms in the pathogenesis of age-related macular degeneration, J. Biochem. Pharmacol. Res., 2014, vol. 2, pp. 132–143.

    Google Scholar 

  62. Tomita, H., Kotake, Y., and Anderson, R.E., Mechanism of protection from light-induced retinal degeneration by the synthetic antioxidant phenyl-N-tert-butylnitrone, Invest. Ophthalmol. Visual Sci., 2005, vol. 46, pp. 427–434.

    Article  Google Scholar 

  63. Tower, J., Programmed cell death in aging, Ageing Res. Rev., 2015, vol. 23, pp. 90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trichonas, G., Murakami, Y., Thanos, A., et al., Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 21695–21700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Viringipurampeer, I.A., Shan, X., Gregory-Evans, K., et al., Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish, Cell Death Differ., 2014, vol. 21, pp. 665–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, H., Sun, L., Su, L., et al., Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3, Mol. Cell, 2014, vol. 54, pp. 133–146.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, J., Iacovelli, J., Spencer, C., and Saint-Geniez, M., Direct effect of sodium iodate on neurosensory retina, Invest. Ophthalmol. Visual Sci., 2014, vol. 55, p. 1941.

    Article  CAS  Google Scholar 

  68. Wenzel, A., Grimm, C., Samardzija, M., and Remé, C.E., Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration, Progr. Retinal Eye Res., 2005, vol. 24, pp. 275–306.

    Article  CAS  Google Scholar 

  69. Wright, A.F., Chakarova, C.F., El-Aziz, M.M.A., and Bhattacharya, S.S., Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait, Nat. Rev. Genet., 2010, vol. 11, pp. 273–284.

    Article  CAS  PubMed  Google Scholar 

  70. Zamaraev, A.V., Kopeina, G.S., Zhivotovsky, B., and Lavrik, I.N., Cell death controlling complexes and their potential therapeutic role, Cell. Mol. Life Sci., 2015, vol. 72, no. 3, pp. 505–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kolosova.

Additional information

Original Russian Text © D.V. Telegina, O.S. Kozhevnikova, N.G. Kolosova, 2016, published in Uspekhi Gerontologii, 2016, Vol. 29, No. 3, pp. 424–432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telegina, D.V., Kozhevnikova, O.S. & Kolosova, N.G. Molecular mechanisms of cell death in retina during development of age-related macular degeneration. Adv Gerontol 7, 17–24 (2017). https://doi.org/10.1134/S2079057017010155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057017010155

Keywords

Navigation