Skip to main content
Log in

Young and old rats have different strategies of metabolic adaptation to Cu-induced liver fibrosis

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

We investigated the role of pro- and antioxidant and immune systems in age-related adaptive reactions to chronic exposure to toxicants (copper ions). For this purpose, we administered multiple doses of copper sulfate to younger and older rats in order to induce liver fibrosis and then measured the parameters of proand antioxidant and immune systems and physiological indices. It was found that Cu-induced liver fibrosis was accompanied by oxidative stress and a significant reduction in cell-mediated immune activity. If oxidative stress was eliminated by the administration of exogenous antioxidants (mix factor), the physical capacity, body weight, and content of red blood cells in rats with fibrosis was recovered. The parameters of cell-mediated immune response recovered more effectively in older animals than in younger ones. The metabolic strategies of adaptation to toxic exposure were different in younger and older animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008, vol.1.

  2. Bozhkov, A.I., Sidorov, V.I., Kurguzova, N.I., and Dlubovskaya, V.L., Metabolic memory enhances the effect of hormesis to cooper ions and is age-dependent, Usp. Gerontol., 2014, vol. 27, no. 1, pp. 72–80.

    CAS  Google Scholar 

  3. Davydov, V.V. and Bozhkov, A.I., Carbonyl stress as a nonspecific factor of pathogenesis: review of the literature and own studies, Zh. Nats. Akad. Med. Nauk Ukr., 2014, vol. 20, no. 1, pp. 25–34.

    CAS  Google Scholar 

  4. Karimov, I.Z., Shavlovskii, M.M., and Nazarov, P.G., Dynamics of the C-reactive protein content and other proteins in acute phase in the blood of patients with viral hepatitis, Tsitokiny Vospalenie, 2004, vol. 3, no. 4, pp. 42–46.

    Google Scholar 

  5. Kryl’skii, E.D., Popova, T.N., and Kirilova, E.M., Activity of aconitate hydratase and the content of citrate in the tissues of rats in experimental rheumatoid arthritis and the action of INR thioctic acid, Inter-Medical, Biol. Nauki, 2014, no. 5, pp. 102–105.

    Google Scholar 

  6. Sakharova, D.A., Vitkovskii, Yu.A., and Tereshkov, P.P., Cell-mediated immunity in patients with chronic hepatitis C, Dal’nevost. Med. Zh., 2013, no. 4, pp. 21–24.

    Google Scholar 

  7. Asakawa, T. and Matsushita, S., Coloring condition of thiobarbituric acid test for detecting lipid hydroperoxides, Lipids, 1980, vol. 15, no. 3, pp. 137–140.

    Article  CAS  Google Scholar 

  8. Barja, G., Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts, Antiox. Redox Signal., 2013, vol. 19, no. 12, pp. 1420–1445.

    Article  CAS  Google Scholar 

  9. Bozhkov, A.I., Klimova, E.M., Nikitchenko, Yu.V., et al., Stem cells take part in regulation of prooxidant activity and immunity at liver fibrosis, Am. J. Biomed. Life Sci., 2014, vol. 2, nos. 6–1, special issue, pp. 5–12.

    CAS  Google Scholar 

  10. Bozhkov, A.I. and Nikitchenko, Yu.V., Thermogenesis and longevity in mammals. Thyroxin model of accelerated aging, Exp. Gerontol., 2014, vol. 60, pp. 173–182.

    Article  CAS  PubMed  Google Scholar 

  11. Carlberg, I. and Mannerviek, B., Glutathione reductase levels in rat brain, J. Biol. Chem., 1975, vol. 250, pp. 5475–5480.

    CAS  PubMed  Google Scholar 

  12. Carocho, M. and Ferreira, I.C.F.R., A review on antioxidants, prooxidants, and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives, Food Chem. Toxicol., 2013, vol. 51, pp. 15–25.

    Article  CAS  PubMed  Google Scholar 

  13. Council Directive 86/609/EEC of November 24, 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes, Off. J. Eur. Union, 1986, no. L 358:0001–0028.

  14. Dawson, C.A. and Horvath, S.M., Swimming in small laboratory animals, Med. Sci. Sports, 1970, vol. 2, no. 2, pp. 51–78.

    CAS  PubMed  Google Scholar 

  15. Douglas, D.T., Oxidative stress, in Encyclopedia of Biophysics, New York: Springer-Verlag, 2013, pp. 1813–1818.

    Google Scholar 

  16. Finkel, T., Signal transduction by reactive oxygen species, J. Cell. Biol., 2011, vol. 194, no. 1, pp. 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gabrieljan, N.I., Levitsky, E.R., Dmitriev, A.A., et al., Skriningovyi metod opredeleniya srednikh molekul v biologicheskikh zhidkostyakh: metodicheskie rekomendatsii (Screening Method of Middle Molecules in Biological Fluids: Methodological Recommendations), Moscow: Meditsina, 1985.

    Google Scholar 

  18. Gallogly, M.M., Shelton, M.D., Qanungo, S., et al., Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappa B targets Bcl-2 and Bcl-xL: implication for cardiac aging, Antiox. Redox Signal., 2010, vol. 12, no. 12, pp. 1339–1353.

    Article  CAS  Google Scholar 

  19. Gardner, P.R., Nguyen, D.M., and White, C.W., Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 25, pp. 12248–12252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gostner, J.M., Becker, K., Fuchs, D., and Sucher, R., Redox regulation of the immune response, Redox Rep., 2013, vol. 18, no. 3, pp. 88–94.

    Article  CAS  PubMed  Google Scholar 

  21. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford: Oxford Univ. Press, 2007.

    Google Scholar 

  22. Kamatch, S.A. and Narayan, K.A., Interaction of Ca2+ with endoplasmic reticulum of rat liver: a standard procedure for the isolation of microsomes, Anal. Biochem., 1972, vol. 48, no. 1, pp. 53–61.

    Article  Google Scholar 

  23. Kohen, R., Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification, Toxicol. Pathol., 2002, vol. 30, no. 6, pp. 620–650.

    Article  CAS  PubMed  Google Scholar 

  24. Konstantinova, S.C. and Russanov, E.M., Aconitase activity in rat liver, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 1996, vol. 113, pp. 125–130.

    Article  CAS  Google Scholar 

  25. Kurguzova, N.I., Bozhkov, A.I., Nikitchenko, Y.V., et al., Interconnection of antitoxic and antioxidant systems of the organism under the action of natural low molecular complex—fungidol, Am. J. Biomed. Life Sci., 2015, vol. 2, nos. 6–1, special issue, pp. 25–32. doi 10.11648/j.ajbls.s.2014020601.15

    Google Scholar 

  26. Lambert, P.H., Dixon, F.J., and Zubler, R.H., A WHO collaborative study for the evaluation of eighteen methods for detecting immune complexes in serum, J. Clin. Lab. Immunol., 1978, vol. 1, no. 1, pp. 1–15.

    Article  Google Scholar 

  27. Liochev, S.I., Reactive oxygen species and the free radical theory of aging, Free Radical Biol. Med., 2013, vol. 60, pp. 1–4.

    Article  CAS  Google Scholar 

  28. Martinovich, G.G., Cherenkevich, S. N., and Sauer, H., Intracellular redox state: towards quantitative description, Eur. Biophys. J., 2005, vol. 34, no. 7, pp. 937–942.

    Article  CAS  PubMed  Google Scholar 

  29. Martinovich, G.G., Martinovich, I.V., and Cherenkevich, S.N., Redox regulation of cellular processes: a biophysical model and experiment, Biophysics, 2011, vol. 56, no. 3, pp. 444–451.

    Article  Google Scholar 

  30. Muniz-Junqueira, M.I., Peçanha, L.M., Silva-Filho, V.L., et al., Novel microtechnique for assessment of postnatal maturation of the phagocytic function of neutrophils and monocytes, Clin. Diagn. Lab. Immunol., 2003, vol. 10, pp. 1096–1102.

    PubMed  PubMed Central  Google Scholar 

  31. Nathan, C. and Cunningham-Bussel, A., Beyond oxidative stress: an immunologist’s guide to reactive oxygen species, Nat. Rev. Immunol., 2013, vol. 13, pp. 349–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohkawa, H., Ohahi, N., and Jadi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 1979, vol. 95, no. 2, pp. 351–358.

    Article  CAS  PubMed  Google Scholar 

  33. Paglia, D.E. and Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med., 1967, vol. 70, pp. 158–169.

    CAS  PubMed  Google Scholar 

  34. Panduria, V., Liua, G., and Surapureddib, S., Role of mitochondrial hOGG1 and aconitase in oxidantinduced lung epithelial cell apoptosis, Free Radical Biol. Med., 2009, vol. 47, no. 6, pp. 750–759.

    Article  Google Scholar 

  35. Pintera, J., The Biochemical, Genetic, and Clinicopathologic Aspects of Haptoglobin, Baltimore: Williams and Wilkins, 1971.

    Google Scholar 

  36. Raghavachari, N. and Lou, M.F., Evidence for the presence of thioltransferase in the lens, Exp. Eye Res., 1996, vol. 63, pp. 433–441.

    Article  CAS  PubMed  Google Scholar 

  37. Ravin, H.A., An improved colorimetric enzymatic assay of ceruloplasmin, J. Lab. Clin. Med., 1961, vol. 58, pp. 161–168.

    CAS  PubMed  Google Scholar 

  38. Sánchez-Valle, V., Chávez-Tapia, N.C., Uribe, M., and Méndez-Sánchez, N., Role of oxidative stress and molecular changes in liver fibrosis: a review, Curr. Med. Chem., 2012, vol. 19, pp. 4850–4860.

    Article  PubMed  Google Scholar 

  39. Sohal, R.S. and Orr, W.C., The redox stress hypothesis of aging, Free Radical Biol. Med., 2012, vol. 52, no. 3, pp. 539–555.

    Article  CAS  Google Scholar 

  40. Usenik, A. and Legiša, M., Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase, PLoS One, 2010, vol. 5, no. 11, p. e15447. doi 10.1371/journal.pone.0015447

    Article  PubMed  PubMed Central  Google Scholar 

  41. Varghese, S., Tang, Yu., and Imlay, J.A., Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion, J. Bacteriol., 2003, vol. 185, no. 1, pp. 221–230. doi 10.1128/JB.185.1.221-230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Viña, J., Borras, C., Abdelaziz, Kh.M., et al., The free radical theory of aging revisited: the cell signaling disruption theory of aging, Antiox. Redox Signal., 2013, vol. 19, no. 8, pp. 779–787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Bozhkov.

Additional information

Original Russian Text © A.I. Bozhkov, Yu.V. Nikitchenko, E.M. Klimova, O.S. Linkevych, K.M. Lebid, A.M.M. Al-Bahadli, M.M.A. Alsardia, 2016, published in Uspekhi Gerontologii, 2016, Vol. 29, No. 4, pp. 555–566.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhkov, A.I., Nikitchenko, Y.V., Klimova, E.M. et al. Young and old rats have different strategies of metabolic adaptation to Cu-induced liver fibrosis. Adv Gerontol 7, 41–50 (2017). https://doi.org/10.1134/S2079057017010040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057017010040

Keywords

Navigation