Skip to main content
Log in

Application of Pulsed Laser Deposition in Reactive Gaseous Media to Fabricate an Effective Hybrid MoS x /WO y Catalyst for the Reaction of Hydrogen Evolution

  • New Technologies of Preparation and Treatment of Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

To fabricate an electrocatalyst containing nanostructured layers of WOy and MoS x , a sequential formation of tungsten oxide and molybdenum sulfide thin films is performed by means of the pulsed laser deposition of W and Mo in low-pressure air and hydrogen sulfide media, respectively. The reactive medium pressure and the substrate (glassy carbon) temperature are varied during and after the deposition. WOy thin films of various morphologies and structures determining certain differences in their catalytic properties in the reaction of hydrogen evolution in acidic solutions are obtained. However, the catalytic efficiency of the obtained WO y nanoelements (spheres, needles, and sheets) with amorphous and crystalline structures appears to be insufficient. Additional deposition of MoS x with an amorphous structure results in a significant improvement of the catalytic properties. Sulfur atoms in the MoSx amorphous matrix cause the formation of catalytically active sites, while the developed surface of the WO y stimulates an increase in the catalyst total active area. Penetration of hydrogen effectively formed on MoS x into the bulk of thin films of WO y provides a crucial electrocatalysis condition—low current resistance in the support layer with a large exposed surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vesborg, P.C.K., Seger, B., and Chorkendorff, I., Recent development in hydrogen evolution reaction catalysts and their practical implementation, J. Phys. Chem. Lett., 2015, vol. 6, pp. 951–957.

    Article  CAS  Google Scholar 

  2. He, Z. and Que, W., Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Appl. Mater. Today, 2016, vol. 3, pp. 23–56.

    Article  Google Scholar 

  3. Grigoriev, S.N., Fominski, V.Yu., Nevolin, V.N., Romanov, R.I., Volosova, M.A., and Irzhak, A.V., Formation of thin catalytic WSex layer on graphite electrodes for activation of hydrogen evolution reaction in aqueous acid, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 2, pp. 285–291.

    Article  Google Scholar 

  4. Xu, L., Zhou, X., Xu, X., Ma, L., Luo, J., and Zhang, L., Triethylenetetramine-assisted hydrothermal synthesis of sulfur-doped few-layer MoSe2/nitrogenated graphene hybrids and their catalytic activity for hydrogen evolution reaction, Adv. Powder Technol., 2016, vol. 27, pp. 1560–1567.

    Article  CAS  Google Scholar 

  5. Dong, H., Liu, C., Ye, H., Hu, L., Fugetsu, B., Dai, W., Cao, Y., Qi, X., Lu, H., and Zhang, X., Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction, Sci. Rep., 2015, vol. 5, p. 7542.

    Google Scholar 

  6. Nevolin, V.N., Grigoriev, S.N., Romanov, R.I., Fominski, D.V., Volosova, M.A., Soloviev, A.A., and Burmistrov, A.A., Pulsed laser deposition and characterization of nanostructured thin films based on Mo(Ni)Sex and amorphous carbon phase as electrocatalysts for hydrogen evolution reaction, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 2, pp. 195–202.

    Article  Google Scholar 

  7. Li, Y., Yu, Y., Huang, Y., Nielsen, R.A., Goddard, W.A., Li, Y., and Cao, L. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution, ACS Catal., 2015, vol. 5, pp. 448–455.

    Article  CAS  Google Scholar 

  8. Fominski, V.Yu., Grigoriev, S.N., Romanov, R.I., Volosova, M.A., Grunin, A.I., and Teterina, G.D., The formation of a hybrid structure from tungsten selenide and oxide plates for a hydrogen-evolution electrocatalyst, Tech. Phys. Lett., 2016, vol. 42, no. 6, pp. 555–558.

    Article  CAS  Google Scholar 

  9. Yang, L., Zhu, X., Xiong, S., Wu, X., Shan, Y., and Chu, P.K., Synergistic WO3 · 2H2O nanoplates/WS2 hybrid catalysts for high-efficiency hydrogen evolution, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 13966–13972.

    Article  CAS  Google Scholar 

  10. Chen, X., Liu, G., Zheng, W., Feng, W., Cao, W., Hu, W., and Hu, P., Vertical 2D MoO2/MoSe2 core–shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction, Adv. Funct. Mater., 2016, vol. 26, no. 4, pp. 8537–8544.

    Article  CAS  Google Scholar 

  11. Zhou, P., Xu, Q., Li, H., Wang, Y., Yan, B., Zhou, Y., Chen, J., Zhang, J., and Wang, K., Fabrication of twodimensional lateral heterostructures of WS2/WO3H2O through selective oxidation of monolayer WS2, Angew. Chem. Int. Ed., 2015, vol. 54, pp. 15226–15230.

    Article  CAS  Google Scholar 

  12. Xi, Y., Zhang, Q., and Cheng, H., Mechanism of hydrogen spillover on WO3(001) and formation of HxWO3 (x = 0.125, 0.25, 0.375, and 0.5), J. Phys. Chem. C, 2014, vol. 118, pp. 494–501.

    Article  CAS  Google Scholar 

  13. Zuev, V.V., Demin, M.V., Fominski, V.Yu, and Romanov, R.I., Evolution of structure and electrical characteristics of Pt/WOx/6H–SiC sensor upon exposure to H2 gas at high temperature, Phys. Proc., 2015, vol. 71, pp. 354–358.

    Article  CAS  Google Scholar 

  14. Zhuiykov, S. and Kats, E., Enhanced electrical properties in sub-10-nm WO3 nanoflakes prepared via a twostep sol-gel-exfoliation method, Nanoscale Res. Lett., 2014, vol. 9, p. 401. doi 10.1186/1556-276X-9-401

    Article  Google Scholar 

  15. Ham, D.J., Phuruangrat, A., Thongtem, S., and Lee, L.S., Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water, Chem. Eng. J., 2010, vol. 165, pp. 365–369.

    Article  CAS  Google Scholar 

  16. Ketpang, K., Kim, M., Kim, S., and Shanmugam, S., High performance catalyst for electrochemical hydrogen evolution reaction based on SiO2/WO3–x nanofacets, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 9732–9740.

    Article  CAS  Google Scholar 

  17. Li, Y.H., Liu, P.F., Pan, L.F., Wang, H.F., Yang, Z.Z., Zheng, L.R., Hu, P., Zhao, H.J., Gu, L., and Yang, H.G., Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water, Nat. Commun., 2015, vol. 6, art. no. 8064.

  18. Fominskii, V.Yu., Romanov, R.I., Nevolin, V.N., and Gnedovets, A.G., Features of formation of metal oxide thin film layers in a gas-sensor structure Pt/WOx/SiC by means of pulsed laser deposition, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 5, pp. 395–404.

    Article  Google Scholar 

  19. Filipescu, M., Ossi, P.M., and Dinescu, M., WOx cluster formation in radio frequency assisted pulsed laser deposition, Appl. Surf. Sci., 2007, vol. 254, pp. 1347–1351.

    Article  CAS  Google Scholar 

  20. Bailini, A., Fonzo, F.D., Fusi, M., Casari, C.S., Bassi, A.L., Russo, V., Baserga, A., and Bottani, C.E., Pulsed laser deposition of tungsten and tungsten oxide thin films with tailored structure at the nano-and mesoscale, Appl. Surf. Sci., 2007, vol. 253, pp. 8130–8135.

    Article  CAS  Google Scholar 

  21. Grigoriev, S.N., Fominski, V.Yu., Romanov, R.I., Volosova, M.A., and Shelyakov, A.V., Pulsed laser deposition of nanocomposite MoSex/Mo thin-film catalyst for hydrogen evolution reaction, Thin Solid Films, 2015, vol. 592, pp. 175–181.

    Article  CAS  Google Scholar 

  22. Schenato, M., Ricardo, C.L.A., Scardi, P., Edla, R., Miotello, A., Orlandi, M., and Morrish, R., Effect of annealing and nanostructuring on pulsed laser deposited WS2 for HER catalysis, Appl. Catal. A, 2016, vol. 510, pp. 156–160.

    Article  CAS  Google Scholar 

  23. Grigoriev, S.N., Fominski, V.Yu., Gnedovets, A.G., and Romanov, R.I., Experimental and numerical study of the chemical composition of WSex thin films obtained by pulsed laser deposition in vacuum and in a buffer gas atmosphere, Appl. Surf. Sci., 2012, vol. 258, pp. 7000–7007.

    Article  CAS  Google Scholar 

  24. Walck, S.D., Zabinski, J.S., Donley, M.S., and Bultman, J.E., Evolution of surface topography in pulsedlaser-deposited thin films of MoS2, Surf. Coat. Technol., 1993, vol. 62, pp. 412–416.

    Article  CAS  Google Scholar 

  25. McDevitt, N.T., Bultman, J.E., and Zabinski, J.S., Study of amorphous MoS2 films grown by pulsed laser deposition, Appl. Spectrosc., 1998, vol. 52, pp. 1160–1164.

    Article  CAS  Google Scholar 

  26. Chang, C.H. and Chan, S.S., Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2, J. Catal., 1981, vol. 72, pp. 139–148.

    Article  CAS  Google Scholar 

  27. Kibsgaard, J., Jaramillo, T.F., and Besenbacher, F., Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2–clusters, Nat. Chem., 2014, vol. 6, pp. 248–253.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nevolin.

Additional information

Original Russian Text © V.N. Nevolin, S.N. Grigoriev, V.Yu. Fominski, R.I. Romanov, M.A. Volosova, D.V. Fominski, P.S. Dzhumaev, 2017, published in Perspektivnye Materialy, 2017, No. 7, pp. 34–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevolin, V.N., Grigoriev, S.N., Fominski, V.Y. et al. Application of Pulsed Laser Deposition in Reactive Gaseous Media to Fabricate an Effective Hybrid MoS x /WO y Catalyst for the Reaction of Hydrogen Evolution. Inorg. Mater. Appl. Res. 9, 297–304 (2018). https://doi.org/10.1134/S2075113318020211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318020211

Keywords

Navigation