Skip to main content
Log in

Automation of Mobile Gravimeter Quartz Elastic System Manufacturing Technology

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper describes an improved technology of quartz elastic system manufacturing for the gravimeters of Chekan series; its purpose is to automate the manufacturing processes of the elastic system elements to improve the work quality and performance. The elastic system manufactured using this technology has been tested on a bench and in field, and the results confirmed its compliance with the requirements set for the sensitive elements of modern mobile gravimeters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Peshekhonov, V.G., Sokolov, A.V., Zheleznyak, L.K., Bereza, A.D., and Krasnov, A.A., Role of navigation technologies in mobile gravimeters development, Gyroscopy and Navigation, 2020, vol. 11, no. 1, pp. 2–12. https://doi.org/10.1134/S2075108720010101

    Article  Google Scholar 

  2. Madni, A.M., Costlow, L.E. and Knowles, S.J., Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets, IEEE Sensors Journal, 2003, vol. 3, no. 5, pp. 569–578. https://doi.org/10.1109/JSEN.2003.817728

    Article  Google Scholar 

  3. Jeanroy, A., Grosset, G., Goudon, J.-C., and Delhaye, F., HRG by Sagem from laboratory to mass production, 2016 IEEE International Symposium on Inertial Sensors and Systems, IEEE, 2016. https://doi.org/10.1109/ISISS.2016.7435530

  4. El-Sheimy, N., and Youssef, A., Inertial sensors technologies for navigation applications: state of the art and future trends, Satellite Navigation, 2020, no. 1, article no. 2. https://doi.org/10.1186/s43020-019-0001-5

  5. Kochetkov, B.M., and Popov, E.I., The elastic system of marine gravimeter, in: Apparaturnye i opytno-metodicheskie raboty po morskoi gravimetrii (Instrumental and Experimental-Methodological Work on Marine Gravimetry), Moscow: Nauka, 1973, pp. 6–31.

  6. Peshekhonov, V.G., et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Means of Measuring the Parameters of the Earth Gravity Field), Ed. Peshekhonov, V.G., Stepanov, O.A., Saint Petersburg: Concern CSRI Elektropribor, JSC, 2017.

  7. Koneshov, V.N., Nepoklonov, V.B., Pogorelov, V.V., Solov’ev, V.N., and Afanas’eva, L.V., Arctic gravity exploration: state of the art and prospects, Izvestiya, Physics of the Solid Earth, 2016, vol. 52, no. 3, pp. 443–451.

    Article  Google Scholar 

  8. Peshekhonov, V.G., Problem of the vertical deflection in high-precision inertial navigation, Gyroscopy and Navigation, 2020, vol. 11, no. 4, pp. 255–262.

    Article  Google Scholar 

  9. Nosov, A.S., Stepanov, O.A., and Toropov, A.B., Navigation informativity of geophysical fields and selection of trajectories for correcting the coordinates using a map, Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 5, pp. 74–92.

  10. Stepanov, O.A., and Nosov, A.S., A map-aided navigation algorithm without preprocessing of field measurements, Gyroscopy and Navigation, 2020, vol. 11, no. 2, pp. 162–175.

    Article  Google Scholar 

  11. Sokolov, A.V., Krasnov, A.A., and Zheleznyak, L.K., Improving the accuracy of marine gravimeters, Gyroscopy and Navigation, 2019, vol. 10, no. 3, pp. 155–160.

    Article  Google Scholar 

  12. Sokolov, A.V., Krasnov, A.A., and Konovalov, A.B., Measurements of the acceleration of gravity on board of various kinds of aircraft, Measurement Techniques, 2016, vol. 59, no. 6, pp. 565–570.

    Article  Google Scholar 

  13. Forsberg, R., Olesen, A.V., and Einarsson, I., Airborne gravimetry for geoid determination with Lacoste Romberg and Chekan gravimeters, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 265–270.

    Article  Google Scholar 

  14. Zhuravlev, V.A., Chelyshev, S.V., and Kochetov, M.V., A case study of Chekan gravimeters and development outlook for marine gravimetry at JSC MAGE, Voprosy teorii i praktiki geologicheskoi interpretatsii geophizicheskikh polei. Materialy 47-i sessii Mezhdunarodnogo nauchnogo seminara D.G. Uspenskogo–V.N. Strakhova, Voronezh, 2020 (Theory and Practice of Geological Intepretation of Geophysical Fields. Proc. 47th Session of the Uspenskii–Strakhov International Scientific Workshop), Voronezh, 2020, pp. 124–127.

  15. Zheleznyak, L.K., Features of the work and processing of the results of the marine gravimetric complex Chekan-AM, Geofizicheskie issledovaniya, 2020, vol. 21, no. 4, pp. 70–81.

  16. Zheleznyak, L.K., Koneshov, V.N., and Mikhailov, P.S., Experimental determination of the vertical gravity gradient below the sea level, Izvestiya, Physics of the Solid Earth, 2016, vol. 52, no. 6, pp. 866–868.

    Article  Google Scholar 

  17. Glazko, V.V., Shustov, E.B., and Filabok, N.N., Marine gravimetric systems and gravimeters of the naval hydrographical service of the Russian Federation, Navigatsiya i gidrografiya, 2011, no. 32, pp. 79–87.

  18. Palamarchuk, V.K., Glinskaya, N.V., Kirsanov, S.N., Makarov, V.M., Subbotin, K.P., Burdakova, E.V., and Mishchenko, O.N., Unique aerogeophysical laboratory “Magnet” for polar aquatories and territories aerogeophysical research implementation, Izvestiya VUZov. Severo-Kavkazskii Region. Estestvennye nauki, 2013, no. 2, pp. 66–70.

  19. Kulinich, R.G., and Valitov, M.G., Marine gravimetry in the Sea of Japan and the Sea of Okotsk, Tekhnicheskie problemy osvoeniya Mirovogo okeana, 2017, vol. 7, pp. 222–226.

  20. Kazanin, G.S., Zayats, I.V., Ivanov, G.I., Makarov, E.S., and Vasil’ev, A.S., Geophysical exploration at the North Pole, Oceanology, 2016, vol. 56, no. 2, pp. 311–313.

    Article  Google Scholar 

  21. Kazanin, G.S., Barabanova, Yu.B., Kirillova-Pokrovskaya, T.A., Chernikov, S.F., Pavlov, S.P., and Ivanov, G.I., Continental margin of the East Siberian Sea: Geological structure and hydrocarbon potential, Razvedka i okhrana nedr, 2017, no. 10, pp. 51–55.

  22. Sinem, I.E., Förste, C., Barthelmes, F., Pflug, H., Li, M., Kaminskis, J., Neumayer, K.-H., and Michalak, G., Gravity measurements along commercial ferry lines in the Baltic sea and their use for geodetic purposes, Marine Geodesy, 2020, vol. 43, no. 6, pp. 573–602.

    Article  Google Scholar 

  23. Förste, C., Sinem, I.E., Johann, F., Schwabe, J., and Liebsch, G., Marine gravimetry activities on the Baltic Sea in the framework of the EU Project FAMOS, Zeitschrift fuer Geodaesie, Geoinformation und Landmanagement, 2020, vol. 145, no. 5, pp. 287–294. https://doi.org/10.12902/zfv-0317-2020

    Article  Google Scholar 

  24. Forsberg, R., Olesen, A., Ferraccioli, F., Jordan, T., Matsuoka, K., Zakrajsek, A., Ghidella, M., and Greenbaum, J., Exploring the Recovery Lakes region and interior Dronning Maud Land, East Antarctica, with airborne gravity, magnetic and radar measurements, Geological Society, London, Special Publications, 2018, vol. 461, no. 1, pp. 23–34.

    Article  Google Scholar 

  25. Lu, B., Barthelmes, F., Petrovic, S., Forste, C., Flechtner, F., Luo, Z., He, K., and Li, M., Airborne gravimetry of GEOHALO mission: data processing and gravity field modeling, Journal of Geophysical Research: Solid Earth, 2017, vol. 122, no. 12, pp. 10,586–10,604.

    Google Scholar 

  26. Zheleznyak, L.K., and Popov, E.I., Elastic system of USG gravimeter, in: Pribory i metody obrabotki graviinertsial’nykh izmerenii (Instruments and Methods for Processing Gravi-inertial measurements), Ed. Sagitov, M.U., Moscow: Nauka, 1984, pp. 54–66.

  27. Nabighian, M.N., Ander, M.E., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Pearson, W.C., Peirce, J.W., Phillips, J.D., and Ruder, M.E., Historical development of the gravity method in exploration, Geophysics, 2005, vol. 70, no. 6, pp. 63–89.

    Article  Google Scholar 

  28. Giraud, A., NEXTROM: 30 years in the service of the highest fiber-optic industry’s manufacturing technologies, Fotonika, 2015, vol. 52, no. 4, pp. 6–11.

    Google Scholar 

  29. Sokolov, A.V., Krasnov, A.A., Elinson, L.S., Vasil’ev, V.A., and Zheleznyak, L.K., Calibration of the Chekan-AM gravimeter by a tilting method, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 288–293.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation grant no. 18-19-00627, https://rscf.ru/project/18-19-00627/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.V., Krasnov, A.A. & Konovalov, A.B. Automation of Mobile Gravimeter Quartz Elastic System Manufacturing Technology. Gyroscopy Navig. 12, 138–146 (2021). https://doi.org/10.1134/S2075108721020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721020073

Keywords:

Navigation