Skip to main content
Log in

Syntheis of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel–Tungsten Catalysts

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Ni-containing catalysts are obtained on the basis of carbon mineral supports produced using sapropel and studied during the catalytic hydroliquefaction of sapropel. It is found that catalysts on supports obtained from mineral-type sapropel are more active than ones on supports based on organic-type sapropel, while bimetallic NiW catalysts exhibit higher activity than monometallic nickel catalysts, regardless of the nature of the support. It is shown that both the nature of the deposited metal and the support composition affect the conversion of the organic matter of sapropel and the composition of liquid products. The liquid products of hydroliquefaction contain mainly nitrogen- and oxygen-containing compounds. The maximum yield of hydrocarbons C5–C21 is obtained for catalysts on supports obtained from mineral-type sapropel. Liquid products of hydroliquefaction of sapropels are similar in composition to biofuels from other renewable raw materials and can be included in existing schemes for further processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yan, J., Bai, Z., Hao, P., Bai, J., and Li, W., Fuel, 2017, vol. 199, pp. 598–605. https://doi.org/10.1016/j.fuel.2017.03.029

    Article  CAS  Google Scholar 

  2. Li, Q., Liu, D., Song, L., Hou, X., Wu, C., and Yan, Z., Ind. Crops Prod., 2018, vol. 113, pp. 157–166. https://doi.org/10.1016/j.indcrop.2018.01.033

    Article  CAS  Google Scholar 

  3. Shui, H., Xu, H., Zhou, Y., Shui, T., Pan, C., Wang, Z., Lei, Z., Ren, S., Kang, S., and Xu, C., Fuel, 2017, vol. 200, pp. 576–582. https://doi.org/10.1016/j.fuel.2017.03.048

    Article  CAS  Google Scholar 

  4. Sharypov, V.I., Beregovtsova, N.G., Baryshnikov, S.V., Taran, O.P., Strakhovenko, V.D., and Kuznetsov, B.N., Khim. Rastit. Syr’ya, 2013, no. 4, pp. 213–218.

  5. Scarsella, M., De Caprariis, B., Damizia, M., and De Filippis, P., Biomass Bioenergy, 2020, vol. 140, p. 105662. https://doi.org/10.1016/j.biombioe.2020.105662

  6. Wang, Z., Xue, W., Zhu, J., Chen, E., Pan, C., Kang, S., Lei, Z., Ren, S., and Shui, H., Fuel, 2016, vol. 181, pp. 711–717. https://doi.org/10.1016/j.fuel.2016.05.042

    Article  CAS  Google Scholar 

  7. Wang, Z., Shui, H., Zhang, D., and Gao, J., Fuel, 2007, vol. 86, nos. 5–6, pp. 835–842. https://doi.org/10.1016/j.fuel.2006.09.018

  8. Li, Q., Hu, X., Liu, D., Song, L., Yan, Z., Li, M., and Liu, Q., J. Energy Inst., 2020, vol. 93, no. 4, pp. 1705–1712. https://doi.org/10.1016/j.joei.2020.03.001

    Article  CAS  Google Scholar 

  9. Lia, R., Li, B., Kai, X., and Yang, T., Fuel Process. Technol., 2017, vol. 167, pp. 363–370. https://doi.org/10.1016/j.fuproc.2017.07.013

    Article  CAS  Google Scholar 

  10. Baloch, H.A., Siddiqui, M.T.H., Nizamuddin, S., Riaz, S., Haris, M., Mubarak, N.M., Griffin, G.J., and Srinivasan, M.P., Process Saf. Environ. Prot., 2021, vol. 148, pp. 1060–1069. https://doi.org/10.1016/j.psep.2021.02.015

    Article  CAS  Google Scholar 

  11. Xu, C. and Etcheverry, T., Fuel, 2008, vol. 87, no. 3, pp. 335–345. https://doi.org/10.1016/j.fuel.2007.05.013

    Article  CAS  Google Scholar 

  12. Barr, M.R., Volpe, R., and Kandiyoti, R., Chem. Eng. Sci.: X, 2021, vol. 10, p. 100090. https://doi.org/10.1016/j.cesx.2021.100090

  13. Geography of Russia. Lake sapropel deposits. https://geographyofrussia.com/ozernye-mestorozhdeniya-sapropelya/. Cited April 18, 2022.

  14. Shtin, S.M., Lake Sapropels and Their Integrated Harnessing, Moscow: MSGU, 2005.

    Google Scholar 

  15. Galkin, M.V. and Samec, J.S.M., ChemSusChem, 2016, vol. 9, no. 13, pp. 1544–1558. https://doi.org/10.1002/cssc.201600237

    Article  CAS  PubMed  Google Scholar 

  16. Taran, O.P., Gromov, N.V., and Parmon, V.N., in Sustainable Catalysis for Biorefineries, Frusteri, F., Aranda, D. and Bonura, G., Eds., Cambridge: Royal Society of Chemistry, 2018, ch. 2, pp. 25–64. https://doi.org/10.1039/9781788013567-00025

  17. Luo, H., Klein, I.M., Jiang, Y., Zhu, H., Liu, B., Kenttämaa, H.I., and Abu-Omar, M.M., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 4, pp. 2316–2322. https://doi.org/10.1021/acssuschemeng.5b01776

    Article  CAS  Google Scholar 

  18. Chikunov, A.S., Shashkov, M.V., Pestunov, A.V., Kazachenko, A.S., Mishenko, T.I., and Taran, O.P., Zh. Sib. Fed. Univ., Khim., 2018, vol. 11, no. 1, pp. 131–150. https://doi.org/10.17516/1998-2836-0064

    Article  Google Scholar 

  19. Smirnov, A.A., Khromova, S.A., Ermakov, D.Y., Bulavchenko, O.A., Saraev, A.A., Aleksandrov, P.V., Kaichev, V.V., and Yakovlev, V.A., Appl. Catal., A, 2016, vol. 514, pp. 224–234.  https://doi.org/10.1016/j.apcata.2016.01.025

  20. Song, Y., Seo, G., and Ihm, S.-K., Appl. Catal., A, 1992, vol. 83., no. 1, pp. 75–86. https://doi.org/10.1016/0926-860X(92)80027-A

  21. Terekhova, E.N., Gulyaeva, T.I., Trenikhin, M.V., Muromtsev, I.V., Nepomnyashchii, A.A., and Bel’skaya, O.B., Kinet. Catal., 2018, vol. 59, no. 2, pp. 237–245. https://doi.org/10.1134/S0023158418020143

    Article  CAS  Google Scholar 

  22. Terekhova, E.N. and Belskaya, O.B., AIP Conf. Proc., 2017, vol. 1876, no. 1, p. 020010. https://doi.org/10.1063/1.4998830

  23. Terekhova, E.N. and Belskaya, O.B., AIP Conf. Proc., 2019, vol. 2141, no. 1, p. 020014. https://doi.org/10.1063/1.5122033

  24. Terekhova, E.N. and Bel’skaya, O.B., Russ. J. App. Chem., 2021, vol. 94, no. 2, pp. 223–229. https://doi.org/10.1134/S1070427221020129

    Article  CAS  Google Scholar 

  25. Gordeev, A.V. and Vodyankina, O.V., Pet. Chem., 2014, vol. 54, no. 6, pp. 452–458. https://doi.org/10.1134/S0965544114060048

    Article  CAS  Google Scholar 

  26. Deliyanni, E. and Bandosz, T.J., J. Hazard. Mater., 2011, vol. 186, no. 1, pp. 667–674. https://doi.org/10.1016/j.jhazmat.2010.11.055

    Article  CAS  PubMed  Google Scholar 

  27. Tamarkina, Yu.V., Kucherenko, V.A., and Shendrik, T.G., Solid Fuel Chem., 2014, vol. 48, no. 4, pp. 251–259. https://doi.org/10.3103/S0361521914040119

    Article  CAS  Google Scholar 

  28. Park, J. and Regalbuto, J.R., J. Colloid Interface Sci., 1995, vol. 175, no. 1, pp. 239–252. https://doi.org/10.1006/jcis.1995.1452

    Article  CAS  Google Scholar 

  29. Boehm, H.P., Carbon, 1994, vol. 32, no. 5, pp. 759–769. https://doi.org/10.1016/0008-6223(94)90031-0

    Article  CAS  Google Scholar 

  30. Barton, D.G., Soled, S.L., Meitzner, G.D., Fuentes, G.A., and Iglesia, E., J. Catal., 1999, vol. 181, pp. 57–72. https://doi.org/10.1006/jcat.1998.2269

    Article  CAS  Google Scholar 

  31. Busto, M., Benítez, V.M., Vera, C.R., Grau, J.M., and Yori, J.C., Appl. Catal., A, 2008, vol. 347, pp. 117–125. https://doi.org/10.1016/j.apcata.2008.06.003

  32. Cortés, J.C., Rodríguez, C., Molina, R., and Moreno, S., Fuel, 2021, vol. 295, p. 120612. https://doi.org/10.1016/j.fuel.2021.120612

  33. Jin, Sh., Xiao, Z., Li, C., Chen, X., Wang, L., Xing, J., Li, W., and Liang, C., Catal. Today, 2014, vol. 234, pp. 125–132. https://doi.org/10.1016/j.cattod.2014.02.014

    Article  CAS  Google Scholar 

  34. Fang, H., Zheng, J., Luo, X., Du, J., Roldan, A., Leoni, S., and Yuan, Y., Appl. Catal., A, 2017, vol. 529, pp. 20–31. https://doi.org/10.1016/j.apcata.2016.10.011

  35. Ramírez, J. and Gutiérrez-Alejandre, A., Catal. Today, 1998, vol. 43, nos. 1–2, pp. 123–133. https://doi.org/10.1016/S0920-5861(98)00141-2

  36. Zuo, D., Vrinat, M., Nie, H., Mauge, F., Shi, Y., Lacroix, M., and Li, D., Catal. Today, 2004, vols. 93–95, pp. 751–760. https://doi.org/10.1016/j.cattod.2004.06.078

  37. Das, D.D., Schnitzer, M.I., Monreal, C.M., and Mayer, P., Bioresour. Technol., 2009, vol. 100, no. 24, pp. 6524–6532.

    Article  CAS  Google Scholar 

  38. Kim, K.H., Eom, I.Y., Lee, S.M., Choi, D., Yeo, H., Choi, I.-G., and Choi, J.W., J. Anal. Appl. Pyrolysis, 2011, vol. 92, no. 1, pp. 2–9. https://doi.org/10.1016/j.jaap.2011.04.002

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the shared resource center of the National Center for the Study of Catalysts. The authors thank E.N. Kudrya, G.G. Savel’yeva, M.V. Trenikhin, and T.I. Gulyaev for their help in examining our samples.

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of a State Task for the Institute of Catalysis, project no. AAAA-A21-121011490008-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Terekhova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhova, E.N., Belskaya, O.B. Syntheis of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel–Tungsten Catalysts. Catal. Ind. 14, 171–180 (2022). https://doi.org/10.1134/S2070050422020106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422020106

Keywords:

Navigation