Skip to main content
Log in

Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

This review focused to the discussion of the results from recent research in a promising area of the complex processing of lignocellulosic biomass: reductive catalytic fractionation (RCF). The effect catalysts, co-catalysts, solvents, sources of hydrogen, and the nature of lignocellulosic raw materials on the selectivity in the production of monomeric lignin products is considered. Heterogeneous catalysts are mainly used in RCF processes, which allows the reductive depolymerization of lignin to obtain low molecular weight compounds while maintaining the carbohydrate components of the biomass. Of the considered catalysts based on platinum group and transition metals, those containing Pd, Pt, Ru, and Ni have the highest activity. The nature of the metal also affects the composition of the resulting products. For example, ruthenium catalysts produce 4-propyl guaiacol as the main product, while ones based on Ni and Pd yield 4-propanol guaiacol. Catalysts containing Mo, due to their lower hydrogenation activity, give monolignols or their esterified derivatives of while preserving the carbohydrate components of lignocellulosic biomass. However, bifunctional catalysts that contain both acidic and metallic active sites are the most efficient in RCF processes. Acid sites contribute to the breaking of etheric β-O-4 bonds, while metal sites catalyze reduction of the resulting intermediate compounds. An important aspect of selecting suitable catalysts for the RCF process is their reusability. The use of a ferromagnetic catalyst or a basket for the catalyst solves the problem of separating it from products of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wang, X., Zhou, J., Li, H., and Sun, G., Adv. Mater. Res., 2013,. vols. 821–822, pp. 1126–1134.

  2. Schutyser, W., Renders, T., Bosch, S., Koelewijn, S.F., Beckham, G.T., and Sels, B.F., Chem. Soc. Rev., 2018, vol. 47, no. 3, pp. 852–908.

    Article  CAS  PubMed  Google Scholar 

  3. Renders, T., Bossche, G., Vangeel, T., Van Aelst, K., and Sels, B., Curr. Opin. Biotechnol., 2019, vol. 56, pp. 193–201.

    Article  CAS  PubMed  Google Scholar 

  4. Li, C., Zhao, X., Wang, A., Huber, G.W., and Zhang, T., Chem. Rev., 2015, vol. 115, no. 21, pp. 11559–11624.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, Y., Shakeel, U., Saif, Ur., Rehman, M., Li, H., Xu, X., and Xu, J., J. Cleaner Prod., 2020, vol. 253, p. 120076.

    Article  CAS  Google Scholar 

  6. You, T.-T., Zhang, L.-M., Zhou, S.-K., and Xu, F., Ind. Crops Prod., 2015, vol. 71, pp. 65–74.

    Article  CAS  Google Scholar 

  7. Tarasov, D., Leitch, M., and Fatehi, P., Biotechnol. Biofuels, 2018, vol. 11. https://doi.org/10.1186/s13068-018-1262-1

  8. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., and Weckhuysen, B.M., Chem. Rev., 2010, vol. 110, no. 6, pp. 3552–3599.

    Article  CAS  PubMed  Google Scholar 

  9. Lancefield, C.S., Panovic, I., Deuss, P., Barta, K., and Westwood, N.J., Green Chem., 2017, vol. 19, no. 1, pp. 202–214.

    Article  CAS  Google Scholar 

  10. Bosch, S., Koelewijn, S.F., Renders, T., Bossche, G., Vangeel, T., Schutyser, W., and Sels, B.F., Top. Curr. Chem., 2018, vol. 376, no. 5, p. 36.

    Article  CAS  Google Scholar 

  11. Deuss, P.J., Lancefield, C.S., Narani, A., de Vries, J.G., Westwood, N.J., and Barta, K., Green Chem., 2017, vol. 19, no. 12, pp. 2774–2782.

    Article  CAS  Google Scholar 

  12. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., and Barta, K., Chem. Rev., 2018, vol. 118, no. 2, pp. 614–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, Z. and Barta, K., Chem. Commun., 2018, vol. 54, no. 56, pp. 7725–7745.

    Article  CAS  Google Scholar 

  14. Taran, O.P., Gromov, N.V., and Parmon, V.N., R. Soc. Chem., Spec. Publ., 2018, pp. 25–64.

  15. Dagle, V.L., Smith, C., Flake, M., Albrecht, K.O., Gray, M.J., Ramasamy, K.K., and Dagle, R.A., Green Chem., 2016, vol. 18, no. 7, pp. 1880–1891.

    Article  CAS  Google Scholar 

  16. Chen, J., Lu, F., Si, X., Nie, X., Lu, R., and Xu, J., ChemSusChem, 2016, vol. 9, no. 23, pp. 3353–3360.

    Article  CAS  PubMed  Google Scholar 

  17. Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Tarabanko, V.E., Yatsenkova, O.V., Djakovitch, L., and Rataboul, F., Catal. Today, 2021, vol. 375, pp. 132–144.

    Article  CAS  Google Scholar 

  18. Kuznetsov, B., Sudakova, I., Garyntseva, N., Tarabanko, V., Chesnokov, N., Djakovitch, L., and Rataboul, F., Top. Catal., 2020, vol. 63, nos. 1–2, pp. 229–242. https://doi.org/10.1007/s11244-020-01244-9

  19. Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Kondrasenko, A.A., Pestunov, A.V., Djakovitch, L., and Pinel, C., React. Kinet., Mech. Catal., 2019, vol. 126, no. 2, pp. 717–735.

    Article  CAS  Google Scholar 

  20. Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Levdansky, V.A., Ivanchenko, N.M., Pestunov, A.V., Djakovitch, L., and Pinel, C., Wood Sci. Technol., 2018, vol. 52, no. 5, pp. 1377–1394.

    Article  CAS  Google Scholar 

  21. Galkin, M.V. and Samec, J.S., ChemSusChem, 2016, vol. 9, no. 13, pp. 1544–1558.

    Article  CAS  PubMed  Google Scholar 

  22. Renders, T., Bosch, S., Koelewijn, S.F., Schutyser, W., and Sels, B.F., Energy Environ. Sci., 2017, vol. 10, no. 7, pp. 1551–1557.

    Article  CAS  Google Scholar 

  23. Bosch, S., Schutyser, W., Vanholme, R., Driessen, T., Koelewijn, S.F., Renders, T., De Meester, B., Huijgen, W.J.J., Dehaen, W., Courtin, C.M., Lagrain, B., Boerjan, W., and Sels, B.F., Energy Environ Sci., 2015, vol. 8, no. 6, pp. 1748–1763.

    Article  CAS  Google Scholar 

  24. Zhang, K., Li, H., Xiao, L.-P., Wang, B., Sun, R.-C., and Song, G., Bioresour. Technol., 2019, vol. 285. https://doi.org/10.1016/j.biortech.2019.121335

  25. Kuznetsov, B.N., Sharypov, V.I., Chesnokov, N.V., Beregovtsova, N.G., Baryshnikov, S.V., Lavrenov, A.V., Vosmerikov, A.V., and Agabekov, V.E., Kinet. Catal., vol. 56, no. 4, pp. 434–441.

  26. Macala, G.S., Matson, T.D., Johnson, C.L., Lewis, R.S., Iretskii, A.V., and Ford, P.C., ChemSusChem, 2009, vol. 2, no. 3, pp. 215–217.

    Article  CAS  PubMed  Google Scholar 

  27. Baryshnikov, S.V., Sharypov, V.I., Beregovtsova, N.G., Taran, O.P., Agabekov, V.E., and Kuznetsov, B.N, Zh. Sib. Fed. Univ., Khim., 2014, vol. 7, no. 3, pp. 455–463.

    CAS  Google Scholar 

  28. Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., and Xu, J., Energy Environ. Sci., 2013, vol. 6, no. 3, pp. 994–1007.

    Article  CAS  Google Scholar 

  29. Galkin, M.V. and Samec, J.S.M., ChemSusChem, 2014, vol. 7, no. 8, pp. 2154–2158.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrini, P., and Rinaldi, R., Angew. Chem., Int. Ed., 2014, vol. 53, no. 33, pp. 8634–8639.

    Article  CAS  Google Scholar 

  31. Boocock, D.G.B., Mackay, D., and Lee, P., Can. J. Chem. Eng., 1982, vol. 60, no. 6, pp. 802–808.

    Article  CAS  Google Scholar 

  32. Boocock, D.G.B., Mackay, D., Franco, H., and Lee, P., Can. J. Chem. Eng., 1980, vol. 58, no. 4, pp. 466–469.

    Article  CAS  Google Scholar 

  33. Boocock, D.G.B., Kallury, R.K.M.R., and Tidwell, T.T., Anal. Chem., 1983, vol. 55, no. 11, pp. 1689–1694.

    Article  CAS  Google Scholar 

  34. Araya, P.E., Droguett, S.E., Neuburg, H.J., and Badilla-Ohlbaum, R., Can. J. Chem. Eng., 1986, vol. 64, no. 5, pp. 775–780.

    Article  CAS  Google Scholar 

  35. Kuznetsov, B.N., Kataliz khimicheskikh prevrashchenii uglya i biomassy (Catalysis of Coal and Biomass Chemical Reactions), Novosibirsk: Nauka, 1990.

  36. Calzavara, Y., Joussot-Dubien, C., Boissonnet, G., and Sarrade, S., Energy Convers. Manage., 2005, vol. 46, no. 4, pp. 615–631.

    Article  CAS  Google Scholar 

  37. Sun, Z., Bottari, G., Afanasenko, A., Stuart, M.C.A., Deuss, P.J., Fridrich, B., and Barta, K., Nat. Catal., 2018, vol. 1, no. 1, pp. 82–92.

    Article  CAS  Google Scholar 

  38. Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C., and Weckhuysen, B.M., Angew. Chem., Int. Ed., 2016, vol. 55, no. 29, pp. 8164–8215.

    Article  CAS  Google Scholar 

  39. Yan, N., Zhao, C., Dyson, P.J., Wang, C., Liu, L.T., and Kou, Y., ChemSusChem, 2008, vol. 1, no. 7, pp. 626–629.

    Article  CAS  PubMed  Google Scholar 

  40. Parsell, T., Yohe, S., Degenstein, J., Jarrell, T., Klein, I., Gencer, E., Hewetson, B., Hurt, M., Kim, J.I., Choudhari, H., Saha, B., Meilan, R., Mosier, N., Ribeiro, F., Delgass, W.N., Chapple, C., Kenttämaa, H.I., Agrawal, R., and Abu-Omar, M.M., Green Chem., 2015, vol. 17, no. 3, pp. 1492–1499.

    Article  CAS  Google Scholar 

  41. Bosch, S., Schutyser, W., Koelewijn, S.F., Renders, T., Courtin, C.M., and Sels, B.F., Chem. Commun., 2015, vol. 51, no. 67, pp. 13158–13161.

    Article  CAS  Google Scholar 

  42. Klein, I., Saha, B., and Abu-Omar, M.M., Catal. Sci. Technol., 2015, vol. 5, no. 6, pp. 3242–3245.

    Article  CAS  Google Scholar 

  43. Schutyser, W., Bosch, S., Renders, T., De Boe, T., Koelewijn, S.F., Dewaele, A., Ennaert, T., Verkinderen, O., Goderis, B., Courtin, C.M., and Sels, B.F., Green Chem., 2015, vol. 17, no. 11, pp. 5035–5045.

    Article  CAS  Google Scholar 

  44. Huang, X., Zhu, J., Korányi, T.I., Boot, M.D., and Hensen, E.J., ChemSusChem, 2016, vol. 9, no. 23, pp. 3262–3267.

    Article  CAS  PubMed  Google Scholar 

  45. Studer, M.H., DeMartini, J.D., Davis, M.F., Sykes, R.W., DE., Proc. Natl. Acad. Sci., U.S., 2011, vol. 108, no. 15, pp. 6300–6305.

  46. Torr, K.M., van de Pas, D.J., Cazeils, E., and Suckling, I.D., Bioresour. Technol., 2011, vol. 102, no. 16, pp. 7608–7611.

    Article  CAS  PubMed  Google Scholar 

  47. Brosse, N., Dufour, A., Meng, X., Sun, Q., and Ragauskas, A., Biofuels, Bioprod. Biorefin., 2012, vol. 6, no. 5, pp. 580–598.

    Article  CAS  Google Scholar 

  48. Wang, S., Gao, W., Li, H., Xiao, L.-P., Sun, R.-C., and Song, G., ChemSusChem, 2018, vol. 11, no. 13, pp. 2114–2123.

    Article  CAS  PubMed  Google Scholar 

  49. Kim, S. and Dale, B.E., Biomass Bioenergy, 2004, vol. 26, no. 4, pp. 361–375.

    Article  Google Scholar 

  50. Luo, H., Klein, I.M., Jiang, Y., Zhu, H., Liu, B., Kenttämaa, H.I., and Abu-Omar, M.M., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 4, pp. 2316–2322.

    Article  CAS  Google Scholar 

  51. Anderson, E.M., Katahira, R., Reed, M., Resch, M.G., Karp, E.M., Beckham, G.T., and Román-Leshkov, Y., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 12, pp. 6940–6950.

    Article  CAS  Google Scholar 

  52. Ebikade, O.E., Samulewicz, N., Xuan, S., Sheehan, J.D., Wu, C., and Vlachos, D.G., Green Chem., 2020, vol. 22, no. 21, pp. 7435–7447.

    Article  CAS  Google Scholar 

  53. Kazachenko, A.S., Tarabanko, V.E., Miroshnikova, A.V., Sychev, V.V., Skripnikov, A.M., Malyar, Y.N., Mikhlin, Y.L., Baryshnikov, S.V., and Taran, O.P., Catalysts, 2021, vol. 11, no. 1. https://doi.org/10.3390/catal11010042

  54. Kazachenko, A.S., Miroshnikova, A.V., Tarabanko, V.E., Skripnikov, A.M., Malyar, Y.N., Borovkova, V.S., Sychev, V.V., and Taran, O.P., Catalysts, 2021, vol. 11, no. 8. https://doi.org/10.3390/catal11080970

  55. Rowell, R., Handbook of Wood Chemistry and Composites, Boca Raton, FL: CRC Press, 2005.

    Book  Google Scholar 

  56. Vangeel, T., Renders, T., Van Aelst, K., Cooreman, E., Bosch, S., Bossche, G., Koelewijn, S.F., Courtin, C.M., and Sels, B.F., Green Chem., 2019, vol. 21, no. 21, pp. 5841–5851.

    Article  CAS  Google Scholar 

  57. Stone, M., Anderson, E.M., Meek, K.M., Reed, M., Katahira, R., Chen, F., Dixon, R.A., Beckham, G.T., and Román-Leshkov, Yu., ACS Sustainable Chem. Eng., 2018, vol. 6, no. 9, pp. 11211–11218. https://doi.org/10.1021/acssuschemeng.8b02741

    Article  CAS  Google Scholar 

  58. Berstis, L., Elder, T., Crowley, M., and Beckham, G.T., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 10, pp. 5327–5335.

    Article  CAS  Google Scholar 

  59. Li, Y., Shuai, L., Kim, H., Motagamwala, A.H., Mobley, J., Yue, F., Tobimatsu, Y., Havkin Frenkel, D., Chen, F., Dixon, R., Luterbacher, J., Dumesic, J., and Ralph, J., Sci. Adv., 2018, vol. 4., no. 9. https://doi.org/10.1126/sciadv.aau2968

  60. Kazachenko, A.S., Baryshnikov, S.V., Chudina, A.I., Malyar, Yu.N., Sychev, V.V., Taran, O.P., D’yakovich, L., and Kuznetsov, B.N., Khim. Rastit. Syr’ya, 2019, vol. 2, pp. 15–26.

    Google Scholar 

  61. Kumaniaev, I., Subbotina, E., Savmarker, J., Larhed, M., Galkin, M.V., and Samec, J.S.M., Green Chem., 2017, vol. 19, no. 24, pp. 5767–5771.

    Article  CAS  Google Scholar 

  62. Kuznetsov, B.N., Sharypov, V.I., Baryshnikov, S.V., Beregovtsova, N.G., and Yakovlev, V.A., Zh. Sib. Fed. Univ., Khim., 2016, vol. 9, no. 2, pp. 230–242.

    Google Scholar 

  63. Cheng, S., Wilks, C., Yuan, Z., Leitch, M., and Xu, C., Polym. Degrad. Stab., 2012, vol. 97, no. 6, pp. 839–848.

    Article  CAS  Google Scholar 

  64. Cheng, S., D’cruz, I., Wang, M., Leitch, M., and Xu, C., Energy Fuels, 2010, vol. 24, no. 9, pp. 4659–4667.

    Article  CAS  Google Scholar 

  65. Ghose, T.K., Pannir Selvam, P.V., and Ghosh, P., Biotechnol. Bioeng., 1983, vol. 25, no. 11, pp. 2577–2590.

    Article  CAS  PubMed  Google Scholar 

  66. Santos, R.B., Hart, P., Jameel, H., and Chang, H.-M., BioResources, 2013, vol. 8, no. 1, pp. 1456–1477.

    Google Scholar 

  67. Sturgeon, M.R., Kim, S., Lawrence, K., Paton, R.S., Chmely, S.C., Nimlos, M., Foust, T.D., and Beckham, G.T., ACS Sustainable Chem. Eng., 2014, vol. 2, no. 3, pp. 472–485.

    Article  CAS  Google Scholar 

  68. Alonso, D.M., Bond, J.Q., and Dumesic, J.A., Green Chem., 2010, vol. 12, no. 9, pp. 1493–1513.

    Article  CAS  Google Scholar 

  69. Schuth, F., R. Soc. Chem., Spec. Publ., 2015, pp.1–21.

  70. Moret, S., Dyson, P.J., and Laurenczy, G., Nat. Commun., 2014, vol. 5. https://doi.org/10.1038/ncomms5017

  71. Renders, T., Cooreman, E., Bosch, S., Schutyser, W., Koelewijn, S.F., Vangeel, T., Deneyer, A., Bossche, G., Courtin, C.M., and Sels, B.F., Green Chem., 2018, vol. 20, no. 20, pp. 4607–4619.

    Article  CAS  Google Scholar 

  72. Deuss, P.J. and Barta, K., Coord. Chem. Rev., 2016, vol. 306, pp. 510–532.

    Article  CAS  Google Scholar 

  73. Deuss, P.J., Scott, M., Tran, F., Westwood, N.J., de Vries, J.G., Barta, K., J. Am. Chem. Soc., 2015, vol. 137, no. 23, pp. 7456–7467.

    Article  CAS  PubMed  Google Scholar 

  74. Li, C., Zheng, M., Wang, A., and Zhang, T., Energy Environ. Sci., 2012, vol. 5, no. 4, pp. 6383–6390.

    Article  CAS  Google Scholar 

  75. Behling, R., Valange, S., and Chatel, G., Green Chem., 2016, vol. 18, no. 7, pp. 1839–1854.

    Article  CAS  Google Scholar 

  76. Chesi, C., de Castro, I.B.D., Clough, M.T., Ferrini, P., and Rinaldi, R., ChemCatChem, 2016, vol. 8, no. 12, pp. 2079–2088.

    Article  CAS  Google Scholar 

  77. Bosch, S., Renders, T., Kennis, S., Koelewijn, S.F., Bossche, G., Vangeel, T., Deneyer, A., Depuydt, D., and Courtin, C.M., Green Chem., 2017, vol. 19, no. 14, pp. 3313–3326.

    Article  Google Scholar 

  78. Sun, J., Li, H., Xiao, L.-P., Guo, X., Fang, Y., Sun, R.-C., and Song, G., ACS Sustainable Chem. Eng., 2019, vol. 7, no. 5, pp. 4666–4674.

    Article  CAS  Google Scholar 

  79. Qiu, S., Guo, X., Huang, Y., Fang, Y., and Tan, T., ChemSusChem, 2019, vol. 12, no. 4, pp. 944–954.

    Article  CAS  PubMed  Google Scholar 

  80. Gong, X., Sun, J., Xu, X., Wang, B., Li, H., and Peng, F., Bioresour. Technol., 2021, vol. 333. https://doi.org/10.1016/j.biortech.2021.124977

  81. Huang, X., Ouyang, X., Hendriks, B. M.S., Morales Gonzalez, O.M., Zhu, J., Korányi, T.I., Boot, M.D., and Hense, E.J.M., Faraday Discuss., 2017, vol. 202, pp. 141–156. https://doi.org/10.1039/c7fd00039a

    Article  CAS  PubMed  Google Scholar 

  82. Huang, X., Morales Gonzalez, O.M., Zhu, J., Korányi, T.I., Boot, M.D. and Hensen, E.J.M., Green Chem., 2017, vol. 19, no. 1, pp. 175–187.

    Article  CAS  Google Scholar 

  83. Renders, T., Bosch, S., Vangeel, T., Ennaert, T., Koelewijn, S.-F., Bossche, G., Courtin, C.M., Schutyser, W., and Sels, B.F., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 12, pp. 6894–6904.

    Article  CAS  Google Scholar 

  84. Galkin, M.V., Smit, A.T., Subbotina, E., Artemenko, K.A., Bergquist, J., Huijgen, W.J.J., and Samec, J.S.M., ChemSusChem, 2016, vol. 9, no. 23, pp. 3280–3287.

    Article  CAS  PubMed  Google Scholar 

  85. Huang, Y., Duan, Y., Qiu, S., Wang, M., Ju, C., Cao, H., Fang, Y., and Tan, T., Sustainable Energy Fuels, 2018, vol. 2, no. 3, pp. 637–647.

    CAS  Google Scholar 

  86. Kuznetsov, B.N., Sharypov, V.I., Baryshnikov, S.V., Miroshnikova, A.V., Taran, O.P., Yakovlev, V.A., Lavrenov, A.V., and Djakovitch, L., Catal. Today, 2021, vol. 379, pp. 114–123.

    Article  CAS  Google Scholar 

  87. Pepper, J.M. and Fleming, R.W.F., Can. J. Chem., 1978, vol. 56, no. 7, pp. 896–898. https://doi.org/10.1139/v78-149

    Article  CAS  Google Scholar 

  88. Parsell, T.H., Owen, B.C., Klein, I., Jarrell, T.M., Marcum, C.L., Haupert, L.J., Amundson, L.M., Kenttämaa, H.I., Ribeiro, F., Miller, J.T., and Abu-Omar, M.M., Chem. Sci., 2013, vol. 4, no. 2, pp. 806–813.

    Article  CAS  Google Scholar 

  89. Klein, I., Marcum, C., Kenttämaa, H., and Abu-Omar, M.M., Green Chem., 2016, vol. 18, no. 8, pp. 2399–2405.

    Article  CAS  Google Scholar 

  90. Taran, O.P., Sharypov, V.I., Baryshnikov, S.V., Bere-govtsova, N.G., Miroshnikova, A.V., Kazachenko, A.S., Sychev, V.V., and Kuznetsov, B.N., Catal. Ind., 2020, vol. 12, no. 4, pp. 330–342.

    Article  Google Scholar 

  91. Alekseeva, M.V., Otyuskaya, D.S., Rekhtina, M.A., Bulavchenko, O.A., Stonkus, O., Kaichev, V.V., Zava-rukhin, S.G., Thybaut, J.W., Alexiadis, V., Venderbosch, R.H., and Yakovlev, V.A., Appl. Catal., A, 2019, vol. 573, pp. 1–12. https://doi.org/10.1016/j.apcata.2019.01.003

  92. Agarwal, A., Rana, M., and Park, J.-H., Fuel Process. Technol., 2018, vol. 181, pp. 115–132.

    Article  CAS  Google Scholar 

  93. Ullah, N., Odda, A.H., Liang, K., Kombo, M.A., Sahar, S., Ma, L.-B., Fang, X.-X., and Xu, A.-W., Green Chem., 2019, vol. 21, no. 10, pp. 2739–2751.

    Article  CAS  Google Scholar 

  94. Renders, T., Schutyser, W., Bosch, S., Koelewijn, S.-F., Vangeel, T., Courtin, C.M., and Sels, B.F., ACS Catal., 2016, vol. 6, no. 3, pp. 2055–2066.

    Article  CAS  Google Scholar 

  95. Pepper, J.M., Hibbert, H., J. Am. Chem. Soc., 1948, vol. 70, no. 1, pp. 67–71.

    Article  CAS  PubMed  Google Scholar 

  96. Shuai, L. and Luterbacher, J., ChemSusChem, 2016, vol. 9, no. 2, pp. 133–155.

    Article  CAS  PubMed  Google Scholar 

  97. Shuai, L., Amiri, M.T., Questell-Santiago, Y.M., Heroguel, F., Li, Y., Kim, H., Meilan, R., Chapple, C., Ralph, J., and Luterbacher, J.S., Science, 2016, vol. 354, no. 6310, pp. 329–333.

    Article  CAS  PubMed  Google Scholar 

  98. Zhu, S., Guo, J., Wang, X., Wang, J., and Fan, W., ChemSusChem, 2017, vol. 10, no. 12, pp. 2547–2559.

    Article  CAS  PubMed  Google Scholar 

  99. Korányi, T.I., Fridrich, B., Pineda, A., and Barta, K., Molecules, 2020, vol. 25, no. 12. https://doi.org/10.3390/molecules25122815

  100. Pepper, J.M., and Steck, W., Can. J. Chem., 1963, vol. 41, no. 11, pp. 2867–2875. https://doi.org/10.1139/v63-420

    Article  CAS  Google Scholar 

  101. Chen, H., Fu, Y., Wang, Z., and Qin, M., BioResources, 2015, vol. 10, no. 2, pp. 3005–3016.

    CAS  Google Scholar 

  102. Bozell, J.J., Black, S.K., Myers, M., Cahill, D., Miller, W.P., and Park, S.K., Biomass Bioenergy, 2011, vol. 35, no. 10, pp. 4197–4208.

    Article  CAS  Google Scholar 

  103. Wang, X. and Rinaldi, R., Angew. Chem., Int. Ed., 2013, vol. 52, no. 44, pp. 11499–1150.

    Article  CAS  Google Scholar 

  104. Wang, X. and Rinaldi, R., Energy Environ. Sci., 2012, vol. 5, no. 8, pp. 8244–8260.

    Article  CAS  Google Scholar 

  105. Chen, X., Zhang, K., Xiao, L.-P., Sun, R.-C., and Song, G., Biotechnol. Biofuels, 2020, vol. 13. https://doi.org/10.1186/s13068-019-1644-z

  106. Sawadjoon, S., Lundstedt, A., and Samec, J.S.M., ACS Catal., 2013, vol. 3, no. 4, pp. 635–642.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00636 and budget project no. 0287-2021-0012 for Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Miroshnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnikova, A.V., Kazachenko, A.S., Kuznetsov, B.N. et al. Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing. Catal. Ind. 14, 231–250 (2022). https://doi.org/10.1134/S2070050422020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422020052

Keywords:

Navigation