Skip to main content
Log in

Contemporary Trends in Methanol Processing

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The current structure of the production and consumption of methanol is reviewed. The main processes of methanol processing and catalysts for their implementation are highlighted: the production of formaldehyde, hydrocarbons (MTH), olefins (MTO), and the production of hydrogen from methanol by means of steam reforming, partial oxidation, autothermal reforming, and decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Methanol Institute Official Website. www.methanol.org/applications/. Cited May 25, 2021.

  2. Rynok metanola: tekushchaya situatsiya i perspektivy (Market of Methanol: State-of-the-Art and Prospects) https://assets.ey.com/content/dam/ey-sites/ey-com/ ru_ru/topics/industrial-products/ey-methanol-market-overview-october-2020-rus.pdf?download. Cited May 25, 2021.

  3. Shapovalova, A., Kratkii obsoz rossiiskogo rynka metanola po itogam 2019 goda (Brief Review of the Russian Market of Methanol by the End of 2019). https:// www.refinitiv.ru/blog/marketinsights/kratkij-obzor-rossijskogo-rynka-metanola-po-itogam-2019/#_ftn1. Cited May 25. 2021.

  4. Roode-Gutzmer, Q.I., Kaiser, D., and Bertau, M., ChemBioEng Rev., 2019, vol. 6, no. 6, pp. 209–236. https://doi.org/10.1002/cben.201900012

    Article  CAS  Google Scholar 

  5. Vyatkin, Yu.L., Lishchiner, I.I., Sinitsyn, S.A., and Kuz’min, A.M., Neftegaz, 2020, vol. 4, pp. 114–118.

    Google Scholar 

  6. Boulamanti, A. and Moya, J.A., Renewable Sustainable Energy Rev., 2017, vol. 68, part 2, pp. 1205–1212. https://doi.org/10.1016/j.rser.2016.02.021

    Article  CAS  Google Scholar 

  7. Garside, M., Production capacity of methanol worldwide from 2018 to 2030. www.statista.com/statistics/1065891/global-methanol-production-capacity/. Cited May 25, 2021.

  8. Yarulina, I., Chowdhury, A.D., Meirer, F., Weckhuysen, B.M., and Gascon, J., Nat. Catal., 2018, vol. 398, pp. 398–411. https://doi.org/10.1038/s41929-018-0078-5

    Article  CAS  Google Scholar 

  9. Hindman, M., MTG Technology. An alternative to liquid fuel production. Paper presented at the World CTL Conference, Beijing, China, 2010. https://ru. scribd.com/document/139367979/Conference-2011-1204-MTG-World-CTL

  10. SINOPEC Engineering Official Website. Voluntary announcement: Entering into a contract for Huizhou chemical complex project (phase I) with ExxonMobil. https://www1.hkexnews.hk/listedco/listconews/sehk/ 2021/0412/2021041200065.pdf. Cited May 25, 2021.

  11. Zhang, L., Wang, S., Shi, D., Qin, Z., Wang, P., Wang, G., Li, J., Dong, M., Fan, W., and Wang, J., Catal. Sci. Technol., 2020, vol. 10, pp. 1835–1847. https://doi.org/10.1039/c9cy02419k

    Article  CAS  Google Scholar 

  12. Sousa, Z.S.B., Luna, A.S., Zotin, F.M.Z., and Henriques, C.A., Chem. Eng. Commun., 2020. https://doi.org/10.1080/00986445.2021.1884552

  13. Stepacheva, A.A., Doluda, V.Yu., Lakina, N.V., Molchanov, V.P., Sidorov, A.I., Matveeva, V.G., Sulman, M.G., and Sulman, E.M., React. Kinet. Mech. Catal., 2018, vol. 124, pp. 807–822. https://doi.org/10.1007/s11144-018-1359-3

    Article  CAS  Google Scholar 

  14. Park, S., Sato, G., Osuga, R., Wang, Y., Kubota, Y., Kondo, J.N., Gies, H., Tatsumi, T., and Yokoi, T., Chem. Ing. Tech., vol. 93, no. 6, pp. 1–12. https://doi.org/10.1002/cite.202000174

  15. Pérez-Uriarte, P., Ateka, A., Gayubo, A.G., Cordero-Lanzac, T., Aguayo, A.T., and Bilbao, J., Chem. Eng. J., 2017, vol. 311, pp. 367–377. https://doi.org/10.1016/j.cej.2016.11.104

    Article  CAS  Google Scholar 

  16. Kianfar, E., Hajimirzaee, S., Mousaviand, S., and Mehr, A.S., Microchem. J., 2020, vol. 156. https://doi.org/10.1016/j.microc.2020.104822

  17. Ali, S.S. and Zaidi, H.A., Energy Fuels, 2020, vol. 34, no. 11, pp. 13225–13246. https://doi.org/10.1021/acs.energyfuels.0c02373

    Article  CAS  Google Scholar 

  18. Rownaghi, A.A. and Hedlund, J., Ind. Eng. Chem. Res., 2011, vol. 50, no. 21, pp. 11872–11878. https://doi.org/10.1021/ie201549j

    Article  CAS  Google Scholar 

  19. Fathi, S., Sohrabi, M., and Falamaki, C., Fuel, 2014, vol. 116, pp. 529–537. https://doi.org/10.1016/j.fuel.2013.08.036

    Article  CAS  Google Scholar 

  20. Zaidi, H.A. and Pant, K.K., Can. J. Chem. Eng., 2005, vol. 83, pp. 970–977.

    Article  CAS  Google Scholar 

  21. Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Int. J. Chem. React. Eng., 2018, vol. 16, no. 7, pp. 1–7.

    Google Scholar 

  22. Wan, Z., Wu, W., Chen, W., Yang, H., and Zhang, D., Ind. Eng. Chem. Res., 2014, vol. 53, no. 50, pp. 19471–19478. https://doi.org/10.1021/ie5036308

    Article  CAS  Google Scholar 

  23. Di, Z., Yang, C., Jiao, X., Li, J., Wu, J., and Zhang, D., Fuel, 2013, vol. 104, pp. 878–881. https://doi.org/10.1016/j.fuel.2012.09.079

    Article  CAS  Google Scholar 

  24. Doluda, V.Yu., Stepacheva, A.A., Lakina, N.V., Manaenkov, O.V., Molchanov, V.P., Demidenko, G.N., Matveeva, V.G., Panfilov, V.I., Sulman, M.G., and Sulman, E.M., Int. J. Sustainable Energy, 2018, vol. 37, no. 10, pp. 970–977. https://doi.org/10.1080/14786451.2017.1402770

    Article  Google Scholar 

  25. Burns, K.M. and Melnick, R.L., Int. J. Occup. Environ. Health, 2012, vol. 18, no. 1, pp. 66–68. https://doi.org/10.1179/107735212X13293200778947

    Article  CAS  PubMed  Google Scholar 

  26. RUPEC Information and Analytical Center. http://rupec.ru/news/43423/. Cited May 25, 2021.

  27. Yong, S.T., Ooi, C.W., Chai, S.P., and Wu, X.S., Int. J. Hydrogen Energy, 2013, vol. 38, pp. 9541–9552.https://doi.org/10.1016/j.ijhydene.2013.03.023

    Article  CAS  Google Scholar 

  28. Sa, S., Silva, H., Brandao, L., Sousa, J.M., and Mendes, A., Appl. Catal., B, 2010, vol. 99, nos. 1–2, pp. 43-57. https://doi.org/10.1016/j.apcatb.2010.06.015

  29. Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K., and Takehira, K., Appl. Catal., A, 2004, vol. 263, pp. 249–253

  30. Chen, W.H., and Syu, Y.J., Int. J. Hydrogen Energy, 2011, vol. 36, pp. 3397–3408. https://doi.org/10.1016/j.ijhydene.2010.12.055

    Article  CAS  Google Scholar 

  31. Peppley, B.A., Amphlett, J.C., Kearns, L.M., and Mann, R.F., Appl. Catal., A, 1999, vol. 179, pp. 31–49.

  32. Liu, X., Toyir, J., Ramírez de la Piscina, P., and Homs, N., Int. J. Hydrogen Energy, 2017, vol. 42, no. 19, pp. 13704–13711. https://doi.org/10.1016/j.ijhydene.2016.12.133

    Article  CAS  Google Scholar 

  33. Agrell, J., Germani, G., Jars, S.G., and Boutonnet, M., Appl. Catal., A, 2003, vol. 242, pp. 233–245.

  34. Agrell, J., Hasselbo, K., Jansson, K., Jaras, S.G., and Boutonnet, M., Appl. Catal., A, 2001, vol. 211, pp. 239–250.

  35. Chen, W.H. and Guo, Y.Z., Fuel, 2018, vol. 222, pp. 599–609. https://doi.org/10.1016/j.fuel.2018.03.004

    Article  CAS  Google Scholar 

  36. Chen, W.S., Chang, F.W., Roselin, L.S., Ou, T.C., and Lai, S.C., J. Mol. Catal. Chem., 2010, vol. 318, pp. 36–43. https://doi.org/10.1016/j.molcata.2009.11.005

    Article  CAS  Google Scholar 

  37. Jampa, S., Jamieson, A.M., Chaisuwan, T., Luengnaruemitchai, A., and Wongkasemjit, S., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 15073–15084. https://doi.org/10.1016/j.ijhydene.2017.05.022

    Article  CAS  Google Scholar 

  38. Chen, W.H. and Lin, B.J., Int. J. Hydrogen Energy, 2013, vol. 38, no. 24, pp. 9973–9983. https://doi.org/10.1016/j.ijhydene.2013.05.111

    Article  CAS  Google Scholar 

  39. Liu, Y., Hayakawa, T., Ishii, T., Kumagai, M., Yasuda, H., and Suzuki, K., Appl. Catal., A, 2001, vol. 210, pp. 301–314.

  40. Matsumura, Y. and Tode, N., Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 1284–1288.

    Article  CAS  Google Scholar 

  41. Li, G., Gu, C., Zhu, W., Wang, X., Yuan, X., and Cui, Z., J. Cleaner Prod., 2018, vol. 183, pp. 415–423. https://doi.org/10.1016/j.jclepro.2018.02.088

    Article  CAS  Google Scholar 

  42. Garcia, G., Arriola, E., Chen, W.-H., and De Luna, M.D., Energy, 2021, vol. 217. https://doi.org/10.1016/j.energy.2020.119384

  43. Gribovskiy, A.G., Makarshin, L.L., Andreev, D.V., Klenov, O.P., and Parmon, V.N., Chem. Eng. J., 2015, vol. 273, pp. 130–137. https://doi.org/10.1016/j.cej.2015.03.036

    Article  CAS  Google Scholar 

  44. Chen, J.Q., Bozzano, A., Glover, B., Fuglerud, T., and Kvisle, S., Catal. Today, 2005, vol. 106, nos. 1–4, pp. 103–107. https://doi.org/10.1016/j.cattod.2005.07.178

  45. Air Liquide E&C. Lurgi MTP™ Methanol-to-Propylene. Industrial Production of Propylene. https:// www.engineeringairliquide.com/ru/lurgi-mtp-propilen-iz-metanola. Cited May 25, 2021.

  46. Gogate, M.R., Pet. Sci. Technol., 2019, vol. 37, no. 5, pp. 559–565. https://doi.org/10.1080/10916466.2018.1555589

    Article  CAS  Google Scholar 

  47. Tian, P., Wei, Y., Ye, M., and Liu, Z., ACS Catal., 2015, vol. 5, pp. 1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  CAS  Google Scholar 

  48. Zhou, J., Gao, M., Zhang, J., Liu, W., Zhang, T., Li, H., Xu, Z., Ye, M., and Liu, Z., Nat. Commun., 2021, pp. 12–17. https://doi.org/10.1038/s41467-020-20193-1

  49. Kempf, R., Paper presented at the Middle East Chemical Week Conference, 2011, Abu Dhabi, UAE.

  50. Kianfar, E., Pet. Chem., 2021. https://doi.org/10.1134/S0965544121050030

  51. Bal, Y., Zeng, Q., Sun, J., Song, Q., Tang, L., Zhang, W., and Liu, Z., J. Porous Mater., 2021. http://doi.org/10.1007/s10934-021-01078-0

  52. Ye, M., Tian, P., and Liu, Z., Engineering, 2021, vol. 7, pp. 17–21. https://doi.org/10.1016/j.eng.2020.12.001

    Article  Google Scholar 

  53. Liu, G., Tian, P., Li, J., Zhang, D., Zhou, F., and Liu, Z., Microporous Mesoporous Mater., 2008, vol. 111, pp. 143–149. https://doi.org/10.1016/j.micromeso.2007.07.023

    Article  CAS  Google Scholar 

  54. Liu, G., Tian, P., Zhang, Y., Li, J., Xu, L., Meng, S., and Liu, Z., Mesoporous Mater., 2008, vol. 114, pp. 143–149. https://doi.org/10.1016/j.micromeso.2008.01.030

    Article  CAS  Google Scholar 

  55. Gao, S., Liu, Z., Xu, S., Zheng, A., Wu, P., Li, B., Yuan, X., Wei, Y., and Liu, Z., J. Catal., 2019, vol. 377, pp. 51–62. https://doi.org/10.1016/j.jcat.2019.07.010

    Article  CAS  Google Scholar 

  56. Wang, C., Yang, M., Tian, P., Xu, S., Yang, Y., Wang, D., Yuan, Y., and Liu, Z., J. Mater. Chem. A, 2015, vol. 3, pp. 5608–5616. https://doi.org/10.1039/c4ta06124a

    Article  CAS  Google Scholar 

  57. Qiao, Y., Yang, M., Gao, B., Wang, L., Tian, P., Xu, S., and Liu, Z., Chem. Commun., 2016, vol. 52, pp. 5718–5721. https://doi.org/10.1039/c5cc10070d

    Article  CAS  Google Scholar 

  58. Wu, P., Yang, M., Zhang, W., Xu, S., Guo, P., Tian, P., and Liu, Z., Chem. Commun., 2017, vol. 53, pp. 4985–4988. https://doi.org/10.1039/c7cc01834g

    Article  CAS  Google Scholar 

  59. Wu, P., Yang, M., Sun, L., Zeng, S., Xu, S., Tian, P., and Liu, Z., Chem. Commun., 2018, vol. 54, pp. 11160–11163. https://doi.org/10.1039/c8cc05871g

    Article  CAS  Google Scholar 

  60. Wu, X., Xu, S., Wei, Y., Zhang, W., Huang, J., Xu, S., He, Y., Lin, S., Sun, T., and Liu, Z., ACS Catal., 2018, vol. 8, no. 8, pp. 7356–7361. https://doi.org/10.1021/acscatal.8b02385

    Article  CAS  Google Scholar 

  61. Wei, Y., Tian, P., Ye, M., and Liu, Z., Paper presented online at the Sino-Russian High-Level International Symposium on Catalysis, 2021.

  62. Ahmad, M.S., Cheng, C.K., Bhuyar, P., Atabani, A.E., Pugazhendhi, A., Lan Chic, N.T., Witoon, T., Lim, J.W., and Juan, J.C., Fuel, 2021, vol. 283. https://doi.org/10.1016/j.fuel.2020.118851

  63. Froment, G., Dehertog, W., and Marchi, A., Catalysis, 1992, vol. 9, no. 1, pp. 1–64.

    Article  CAS  Google Scholar 

  64. Dehertog, W. and Froment, G., Appl. Catal., 1991, vol. 71, no. 1, pp. 153–65.

    Article  CAS  Google Scholar 

  65. Wu, X. and Anthony, R., Appl. Catal., A, 2001, vol. 218, nos. 1–2, pp. 241–250.

  66. Vora, B., Funk, G., and Bozzano, A., in Handbook of Petroleum Processing, Treese, S.A., Pujadó, P.R., and Jones, D.S.J. Eds., Cham: Springer, 2015, pp. 883–904. https://doi.org/10.1007/978-3-319-14529-7_14

  67. Jones, H.T., Platinum Met. Rev., 2000, vol. 44, no. 3, pp. 94–105.

    CAS  Google Scholar 

  68. Bender, M., Paper presented at the DGMK-Conference “New Technologies and Alternative Feedstocks in Petrochemistry and Refining”, Dresden, Germany, 2013.

  69. Conte, M., Lopez-Sanchez, J.A., He, Q., Morgan, D.J., Ryabenkova, Y., Bartley, J.K., Carley, A.F., Taylor, S.H., Kiely, C.J., Khalid, K., and Hutchings, G.J., Catal. Sci. Technol., 2012, vol. 2, pp. 105–112. https://doi.org/10.1039/c1cy00299f

    Article  CAS  Google Scholar 

  70. Zhang, J., Qian, W., Kong, C., and Wei, F., ACS Catal., 2015, vol. 5, pp. 2982–2988. https://doi.org/10.1021/acscatal.5b00192

    Article  CAS  Google Scholar 

  71. Pinilla-Herrero, I., Borfecchia, E., Holzinger, J., Mentzel, U.V., Joensen, F., Lomachenko, K.A., Bordiga, S., Lamberti, C., Berlier, G., Olsbye, U., Svelle, S., Skibsted, J., and Beato, P., J. Catal., 2018, vol. 362, pp. 146–163. https://doi.org/10.1016/j.jcat.2018.03.032

    Article  CAS  Google Scholar 

  72. Shoinkhorova, T., Cordero-Lanzac, T., Ramirez, A., Chung, S.-H., Dokania, A., Ruiz-Martinez, J., and Gascon, J., ACS Catal., 2021, vol. 11, no. 6, pp. 3602–3613. https://doi.org/10.1021/acscatal.0c05133

    Article  CAS  Google Scholar 

  73. Pinilla-Herrero, I., Borfecchia, E., Cordero-Lanzac, T., Mentzel, U.V., Joensen, F., Lomachenko, K.A., Bordiga, S., Olsbye, U., Beato, P., and Svelle, S., J. Catal., 2021, vol. 394, pp. 416–428. https://doi.org/10.1016/j.jcat.2020.10.02

    Article  CAS  Google Scholar 

  74. Wang, Y., An, H., Ma, H., Zhang, X., Kang, G., and Cao, J., Adv. Powder Technol., 2021. https://doi.org/10.1016/j.apt.2021.03.037

  75. Gazprom Official Website. Russian Market of Gas. https://www.gazprom.ru/about/marketing/russia/. Cited May 21, 2021.

Download references

Funding

This work was partially supported by the RF Ministry of Science and Higher Education as part of a State Task for the Boreskov Institute of Catalysis, project no. AAAA-A21-121011390054-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Khassin or T. P. Minyukova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khassin, A.A., Minyukova, T.P. Contemporary Trends in Methanol Processing. Catal. Ind. 14, 31–41 (2022). https://doi.org/10.1134/S2070050422010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422010044

Keywords:

Navigation