Skip to main content
Log in

Features of the Liquid-Phase Oxidation of Alkenes to Carbonyl Compounds in the Presence of Palladium Compounds

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Some specific features in the liquid-phase oxidation of alkenes to ketones or aldehydes in the presence of palladium compounds (Wacker oxidation) are discussed. It is shown that selecting the appropriate conditions of the reaction (the effective compositions of the catalyst, the oxidizing agent, and solvent) allows the selective synthesis of either ketones or aldehydes from terminal alkenes and ketones from internal alkenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Jira, R. and Freiesleben, W., in Organometallic Reactions, Becker, E.I. and Tsutsui, M., Eds., New York: Wiley, 1970, vol. 3, pp. 1–190.

    Google Scholar 

  2. Stern, E.W., Transition Metals in Homogeneous Catalysis, New York: Marcel Dekker, 1971.

    Google Scholar 

  3. Moiseev, I.I., π-Kompleksy v zhidkofaznom okislenii olefinov (π-Complexes in the Liquid-Phase Oxidation of Olefins), Moscow: Nauka, 1970.

  4. Henry, P.M., J. Am. Chem. Soc., 1964, vol. 86, no. 16, pp. 3246–3250.

    Article  CAS  Google Scholar 

  5. Keith, J.A. and Henry, P.M., Angew. Chem., Int. Ed. Engl., 2009, vol. 48, no. 48, pp. 9038–9049.

    Article  CAS  Google Scholar 

  6. Takacs, J.M. and Jiang, X.-T., Curr. Org. Chem., 2003, vol. 7, no. 4, pp. 369–396.

    Article  CAS  Google Scholar 

  7. Bard, A.J., Parsons, R., and Jordan, J., Standard Potentials in Aqueous Solution (IUPAC), New York–Basel: Marcel Dekker, 1985.

  8. Wang, D., Weinstein, A.B., White, P.B., and Stahl, S.S., Chem. Rev., 2018, vol. 118, no. 5, pp. 2636–2679.

    Article  CAS  PubMed  Google Scholar 

  9. Wright, J.A., Gaunt, M.J., and Spencer, J.B., Chem.-Eur. J., 2006, vol. 12, no. 3, pp. 949–955.

    Article  CAS  PubMed  Google Scholar 

  10. Baiju, T.V., Gravel, E., Doris, E., and Namboothiri, I.N.N., Tetrahedron Lett., 2016, vol. 57, no. 36, pp. 3993–4000.

    Article  CAS  Google Scholar 

  11. Michel, B.W., Camelio, A.M., Cornell, C.N., and Sigman, M.S., J. Am. Chem. Soc., 2009, vol. 131, no. 17, pp. 6076–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michel, B.W., Steffens, L.D., and Sigman, M.S., J. Am. Chem. Soc., 2011, vol. 133, no. 21, pp. 8317–8325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sigman, M.S. and Werner, E.W., Acc. Chem. Res., 2012, vol. 45, no. 6, pp. 874–884.

    Article  CAS  PubMed  Google Scholar 

  14. DeLuca, R.J., Edwards, J.L., Steffens, L.D., Michel, B.W., Qiao, X., Zhu, C., Cook, S.P., and Sigman, M.S., J. Org. Chem., 2013, vol. 78, no. 4, pp. 1682–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brink, G.-J., Arends, I.W.C.E., Papadogianakis, G., and Sheldon, R.A., Chem. Commun., 1998, no. 21, pp. 2359–2360.

  16. Brink, G.-J., Arends, I.W.C.E., Papadogianakis, G., and Sheldon, R.A., Appl. Catal., A, 2000, vols. 194–195, pp. 435–442.

  17. Skumov, M. and Balbolov, E., Catal. Lett., 2000, vol. 69, nos. 1–2, pp. 103–107.

  18. Miller, D.G. and Wayner, D.D.M., J. Org. Chem., 1990, vol. 55, no. 9, pp. 2924–2927.

    Article  CAS  Google Scholar 

  19. Januszkiewicz, K. and Alper, H., Tetrahedron Lett., 1983, vol. 24, no. 47, pp. 5159–5162.

    Article  CAS  Google Scholar 

  20. Yokota, T., Fujibayashi, S., Nishiyama, Y., Sakaguchi, S., and Ishii, Y., J. Mol. Catal. A: Chem., 1996, vol. 114, nos. 1–3, pp. 113–122.

  21. Nasrollahzadeh, M., Sajjadi, M., Shokouhimehr, M., and Varma, R.S., Coord. Chem. Rev., 2019, vol. 397, pp. 54–75.

    Article  CAS  Google Scholar 

  22. Mitsudome, T., Umetani, T., Mori, K., Mizugaki, T., Ebitani, K., and Kaneda, K., Tetrahedron Lett., 2006, vol. 47, no. 9, pp. 1425–1428.

    Article  CAS  Google Scholar 

  23. Tang, H.G. and Sherrington, D.C., J. Catal., 1993, vol. 142, no. 2, pp. 540–551.

    Article  CAS  Google Scholar 

  24. Gao, X., Zhou, J., and Peng, X., Catal. Commun., 2019, vol. 122, pp. 73–78.

    Article  CAS  Google Scholar 

  25. Gao, X., Li, Z., Yan, W., and Peng, X., J. Saudi Chem. Soc., 2020, vol. 24, pp. 663–672.

    Article  CAS  Google Scholar 

  26. Dong, J.J., Browne, W.R., and Feringa, B.L., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 3, pp. 734–744.

    Article  CAS  Google Scholar 

  27. Teo, P., Wickens, Z.K., Dong, G., and Grubbs, R.H., Org. Lett., 2012, vol. 14, no. 13, pp. 3237–3239.

    Article  CAS  PubMed  Google Scholar 

  28. Wickens, Z.K., Morandi, B., and Grubbs, R.H., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 43, pp. 11257–11260.

    Article  CAS  Google Scholar 

  29. Muzart, J., Tetrahedron, 2007, vol. 63, no. 32, pp. 7505–7521.

    Article  CAS  Google Scholar 

  30. US Patent 0316149, 2014.

  31. Mimoun, H., Machirant, M.M.P., and de Roch, I.S., J. Am. Chem. Soc., 1978, vol. 100, no. 17, pp. 5437–5444.

    Article  Google Scholar 

  32. Takethira, K., Hayakawa, T., and Orita, H., Chem. Lett., 1985, vol. 14, no. 12, pp. 1835–1838.

    Article  Google Scholar 

  33. Kishi, A., Higashino, T., Sakaguchi, S., and Ishii, Y., Tetrahedron Lett., 2000, vol. 41, no. 1, pp. 99–102.

    Article  CAS  Google Scholar 

  34. Ogawa, H., Fujinami, H., Taya, K., and Teratani, S., Bull. Chem. Soc. Jpn., 1984, vol. 57, no. 7, pp. 1908–1913.

    Article  CAS  Google Scholar 

  35. Kim, Y., Kim, H., Lee, J., Sim, K., Han, Y., and Paik, H., Appl. Catal., A, 1997, vol. 155, no. 1, pp. 15–26.

  36. Miller, D.G. and Wayner, D.D.M., Can. J. Chem. Eng., 1992, vol. 70, no. 9, pp. 2485–2490.

    Article  CAS  Google Scholar 

  37. Tsuji, J. and Minato, M., Tetrahedron Lett., 1987, vol. 28, no. 32, pp. 3683–3686.

    Article  CAS  Google Scholar 

  38. Betzmeier, B., Lhermitte, F., and Knochel, P., Tetrahedron Lett., 1998, vol. 39, no. 37, pp. 6667–6670.

    Article  Google Scholar 

  39. Escola, J.M., Botas, J.A., Vargas, C., and Bravo, M., J. Catal., 2010, vol. 270, no. 1, pp. 34–39.

    Article  CAS  Google Scholar 

  40. Qin, S., Dong, L., Chen, Z., Zhang, S., and Yin, G., Dalton Trans., 2015, vol. 44, no. 40, pp. 17508–17515.

    Article  CAS  PubMed  Google Scholar 

  41. Tsuji, J., Shimizu, I., and Yamamoto, K., Tetrahedron Lett., 1976, vol. 17, no. 34, pp. 2975–2976.

    Article  Google Scholar 

  42. Wayner, D.D.M. and Hartstock, F.W., J. Mol. Catal., 1988, vol. 48, no. 1, pp. 15–19.

    Article  CAS  Google Scholar 

  43. USSR Inventor’s Certificate no. 421226, Byull. Izobret., 1992, no. 16.

  44. USSR Inventor’s Certificate no. 1669109., Byull. Izobret., 1989, no. 3.

  45. Zhizhina, E.G., Shitova, N.B., and Matveev, K.I., Kinet. Katal., 1981, vol. 22, no. 6, pp. 1451–1456.

    CAS  Google Scholar 

  46. Novyi spravochnik khimika i tekhnologa. Syr’e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv (New Chemist’s and Technologist’s Handbook. Feedstocks and Products in the Industry of Organic and Inorganic Compounds), Pokonova, Yu.V. and Strakhov, V.I., Eds., St. Petersburg: NPO Professional/NPO Mir i Sem’ya, 2005, part 2.

  47. Odyakov, V.F., Zhizhina, E.G., and Maksimovskaya, R.I., Appl. Catal., A, 2008, vol. 342, nos. 1–2, pp. 126–130.

  48. Odyakov, V.F., Zhizhina, E.G., Rodikova, Yu.A., and Gogin, L.L., Eur. J. Inorg. Chem., 2015, vol. 2015, no. 22, pp. 3618–3631.

    Article  CAS  Google Scholar 

  49. RF Patent 2230612, Byull. Izobret., 2004, no. 17.

  50. RF Patent 2243818, Byull. Izobret., 2005, no. 1.

  51. RF Patent 2275960, Byull. Izobret., 2006, no. 13.

  52. Matveev, K.I., Zhizhina, E.G., Odyakov, V.F., and Parmon, V.N., Kataliz V promyshlennosti, 2014, vol. 14, no. 3, pp. 32–42.

  53. Odyakov, V.F., Zhizhina, E.G., Matveev, K.I., and Parmon, V.N., Kataliz V promyshlennosti, 2015, vol. 15, no. 1, pp. 18–26.

  54. Clement, W.H. and Selwitz, C.M., J. Org. Chem., 1964, vol. 29, no. 1, pp. 241–243.

    Article  CAS  Google Scholar 

  55. Tsuji, J., Synthesis, 1984, no. 5, pp. 369–384.

  56. Mitsudome, T., Umetani, T., Nosaka, N., Mori, K., Mizugaki, T., Ebitani, K., and Kaneda, K., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, no. 3, pp. 481–485.

    Article  CAS  Google Scholar 

  57. Namboodiri, V.V., Varma, R.S., Sahle-Demessie, E., and Pillai, U.R., Green Chem., 2002, vol. 4, no. 2, pp. 170–173.

    Article  CAS  Google Scholar 

  58. Jiang, H., Jia, L., and Li, J., Green Chem., 2000, vol. 2, no. 4, pp. 161–164.

    Article  CAS  Google Scholar 

  59. Wang, X., Natarajan, S.V., Kawanami, H., and Ikushima, Y., Green Chem., 2007, vol. 9, no. 12, pp. 1352–1355.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of a state task for the Russian Academy of Sciences’ Boreskov Institute of Catalysis, project no. AAAA-A21-121011390007-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Gogin.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogin, L.L., Zhizhina, E.G. Features of the Liquid-Phase Oxidation of Alkenes to Carbonyl Compounds in the Presence of Palladium Compounds. Catal. Ind. 13, 263–268 (2021). https://doi.org/10.1134/S2070050421030041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421030041

Keywords:

Navigation