Skip to main content
Log in

Mathematical Simulating the Biokatalytic Transformation of Methyl Phenyl Sulfide into (R)-Sulfoxide

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A mathematical model is proposed for describing the biotransformation of methyl phenyl sulfide to (R)-methyl phenyl sulfoxide by immobilized Gordonia terrae IEGM 136 cells. Kinetic patterns of the biotransformation of methyl phenyl sulfide are determined using experimental data on the initial concentration of sulfide and the amount of biocatalyst. The experimental data are compared to simulations of sulfide biotransformation scaling in a laboratory bioreactor. A mathematical model is developed for describing the biotransformation of methyl phenyl sulfide with repeated use of the biocatalyst. The resulting data can be used for optimizing the biotransformation of a wide range of organic aryl alkyl sulfides to optically active sulfoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wojaczyńska, E. and Wojaczyński, J., Chem. Rev., 2010, vol. 110, no. 7, pp. 4303–4356.

    Article  Google Scholar 

  2. O’Mahony, G.E., Ford, A., and Maguire, A.R., J. Sulfur Chem., 2013, vol. 34, no. 3, pp. 301–341.

    Article  Google Scholar 

  3. Carreño, M.C., Ribagorda, M., Somoza, A., and Urbano, A., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, no. 15, pp. 2755–2757.

    Article  Google Scholar 

  4. De la Pradilla, R.F., Simal, C., Bates, R.H., Viso, A., and Infantes, L., Org. Lett., 2013, vol. 15, no. 19, pp. 4936–4939.

    Article  Google Scholar 

  5. Raghavan, S. and Rathore, K., Tetrahedron, 2009, vol. 65, no. 48, pp. 10083–10092.

    Article  CAS  Google Scholar 

  6. Raghavan, S., Krishnaiah, V., and Sridhar, B., J. Org. Chem., 2010, vol. 75, no. 2, pp. 498–501.

    Article  CAS  Google Scholar 

  7. Chen, Y., Zhuo, J., Zheng, D., Tian, S., and Li, Z., J. Mol. Catal. B: Enzym., 2014, vol. 106, pp. 100–104.

    Article  CAS  Google Scholar 

  8. Matsui, T., Dekishima, Y., and Ueda, M., Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 18, pp. 7699–7706.

    Article  CAS  Google Scholar 

  9. El'kin, A.A., Grishko, V.V., and Ivshina, I.B., Prikl. Biokhim. Mikrobiol., 2010, vol. 46, no. 6, pp. 637–643.

    Google Scholar 

  10. Mascotti, M.L., Orden, A.A., Bisogno, F.R., de Gonzalo, G., and Kurina-Sanz, M., J. Mol. Catal. B: Enzym., 2012, vol. 82, pp. 32–36.

    Article  CAS  Google Scholar 

  11. Verbelen, P.J., de Schutter, D.P., Delvaux, F., Verstrepen, K.J., and Delvaux, F.R., Biotechnol. Lett., 2006, vol. 28, no. 19, pp. 1515–1525.

    Article  CAS  Google Scholar 

  12. Kisukuri, C.M. and Andrade, L.H., Org. Biomol. Chem., 2015, vol. 13, no. 40, pp. 10086–10107.

    Article  CAS  Google Scholar 

  13. Lozinsky, V.I., Galaev, I.Yu., Plieva, F.M., Savina, I.N., Jungvid, H., and Mattiasson, B., Trends Biotechnol., 2003, vol. 21, no. 10, pp. 445–451.

    Article  CAS  Google Scholar 

  14. Hassan, C.M. and Peppas, N.A., Adv. Polym. Sci., 2000, vol. 153, pp. 37–65.

    Article  CAS  Google Scholar 

  15. Elkin, A.A., Kylosova, T.I., Grishko, V.V., and Ivshina, I.B., J. Mol. Catal. B: Enzym., 2013, vol. 89, pp. 82–85.

    Article  CAS  Google Scholar 

  16. Kylosova, T.I., Elkin, A.A., Grishko, V.V., and Ivshina, I.B., J. Mol. Catal. B: Enzym., 2016, vol. 123, pp. 8–13.

    Article  CAS  Google Scholar 

  17. Atlas, R.T., Florida: CRC Press, 1993.

    Google Scholar 

  18. Kuyukina, M.S., Ivshina, I.B., Gavrin, A.Yu., Podorozhko, E.A., Lozinsky, V.I., Jeffree, C.E., and Philp, J.C., J. Microbiol. Methods, 2006, vol. 65, no. 3, pp. 596–603.

    Article  CAS  Google Scholar 

  19. Grishko, V.V., Ivshina, I.B., and Tolstikov, A.G., Biotechnol. Russ., 2004, vol. 5, pp. 69–77.

    Google Scholar 

  20. Li, A.-T., Zhang, J.-D., Yu, H.-L., Pan, J., and Xu, J.-H., Process Biochem., 2011, vol. 46, no. 3, pp. 689–694.

    Article  CAS  Google Scholar 

  21. Linnik, Yu.V., Metod naimen’shikh kvadratov i osnovy matematiko-statisticheskoi obrabotki nablyudenii (Least Squares Technique and Mathematical Statistic Foundations of Observation Processing), Moscow: Fizmatgiz, 1962.

    Google Scholar 

  22. Ramadhan, S.H., Matsui, T., Nakano, K., and Minami, H., Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 5, pp. 1903–1907.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. El’kin.

Additional information

Original Russian Text © A.A. El’kin, T.I. Kylosova, M.A. Osipenko, Yu.I. Nyashin, V.V. Grishko, I.B. Ivshina, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El’kin, A.A., Kylosova, T.I., Osipenko, M.A. et al. Mathematical Simulating the Biokatalytic Transformation of Methyl Phenyl Sulfide into (R)-Sulfoxide. Catal. Ind. 10, 83–90 (2018). https://doi.org/10.1134/S2070050418010051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418010051

Keywords

Navigation