Skip to main content
Log in

Noncommutative Geometry of Groups Like Γ0(N)

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

We show that the Connes-Marcolli GL2-system can be represented on the Big Picture, a combinatorial gadget introduced by Conway in order to understand various results about congruence subgroups pictorially. In this representation the time evolution of the GL2-system is implemented by Conway’s distance between projective classes of commensurable lattices. We exploit these results in order to associate quantum statistical mechanical systems to congruence subgroups. This work is motivated by the study of congruence subgroups and their principal moduli in connection with monstrous moonshine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. O. L. Atkin and J. Lehner, “Hecke operators on Γ0(m),” Math. Ann. 185, 134–160 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  2. U. Baumgartner, M. Laca, J. Ramagge and G. Willis, “Hecke algebras from groups acting on trees and HNN extensions,” J. Algebra 321 (11), 3065–3088 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. E. Borcherds, “Monstrousmoonshine and monstrous Lie superalgebras,” Invent. Math. 109 (2), 405–444 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-B. Bost and A. Connes, “Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory,” SelectaMath. (N.S.) 1 (3), 411–457 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1, Texts and Monographs in Physics, 2. C*- and W*-Algebras, Symmetry Groups, Decomposition of States (Springer- Verlag, New York, 1987).

    MATH  Google Scholar 

  6. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 2, Texts and Monographs in Physics, 2. EquilibriumStates.Models inQuantum StatisticalMechanics(Springer-Verlag, Berlin, 1997)

    Google Scholar 

  7. A. Connes and M. Marcolli, “From physics to number theory via noncommutative geometry,” Frontiers in Number Theory, Physics, and Geometry. I, pp. 269–347 Springer, Berlin, 2006.

    Chapter  Google Scholar 

  8. A. Connes, M. Marcolli and N. Ramachandran, “KMS states and complex multiplication,” Selecta Math. (N.S.) 11 (3-4), 325–347 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Connes, M. Marcolli and N. Ramachandran, “KMS states and complex multiplication. II,” Operator Algebras: The Abel Symposium 2004, AbelSymp. 1, 15–59 (Springer, Berlin, 2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Connes and H. Moscovici, “Modular Hecke algebras and their Hopf symmetry,” Moscow Math. J. 4 (1), 67–109 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. H. Conway, “Understanding groups like Γ0(N),” Groups, Difference Sets, and theMonster, (Columbus, OH, 1993), Ohio State Univ.Math. Res. Inst. Publ. 4, pp. 327–343 (de Gruyter, Berlin, 1996).

    MathSciNet  MATH  Google Scholar 

  12. J. Conway, J. McKay and A. Sebbar, “On the discrete groups of Moonshine,” Proc. Amer. Math. Soc. 132 (8), 2233–2240 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. H. Conway and S. P. Norton, “Monstrous moonshine,” Bull. London Math. Soc. 11 (3), 308–339 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Cornelissen, M. Marcolli, K. Reihani and A. Vdovina, “Noncommutative geometry on trees and buildings,” Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, pp. 73–98 (Friedr. Vieweg, Wiesbaden, 2008).

    MathSciNet  MATH  Google Scholar 

  15. C. J. Cummins and S. P. Norton, “Rational Hauptmoduls are replicable,” Canad. J. Math. 47 (6), 1201–1218 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. F. Duncan, “Arithmetic groups and the affine E8 Dynkin diagram,” Groups and Symmetries, CRMProc. Lecture Notes 47, pp. 135–163 (Amer.Math. Soc., Providence, RI, 2009).

    Article  MATH  Google Scholar 

  17. I. B. Frenkel, J. Lepowsky and A. Meurman, “A natural representation of the Fischer-Griess Monster with the modular function J as character,” Proc. Nat. Acad. Sci. U.S.A. 81 (10, Phys. Sci.), 3256–3260 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math. 134 (Academic Press, Inc., Boston, MA, 1988).

    Google Scholar 

  19. A. Kumjian, “Notes on C*-algebras of graphs,” Operator Algebras and Operator Theory, (Shanghai, 1997), Contemp. Math. 228, pp. 189–200 (Amer.Math. Soc., Providence, RI, 1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Laca, N. S. Larsen and S. Neshveyev, “Phase transition in the Connes-Marcolli GL2-system,” J. Noncommut. Geom. 1 (4), 397–430 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. McKay and A. Sebbar, “Replicable functions: an introduction,” Frontiers in Number Theory, Physics, and Geometry. II, pp. 373–386 (Springer, Berlin, 2007).

    Chapter  Google Scholar 

  22. J-P. Serre, Trees, (Springer-Verlag, Berlin-New York, 1980).

    Book  MATH  Google Scholar 

  23. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, (Kanô Memorial Lectures, No. 1) Publications of the Mathematical Society of Japan, No. 11 (Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971).

  24. J. G. Thompson, “Some numerology between the Fischer-GriessMonster and the ellipticmodular function,” Bull. London Math. Soc. 11 (3), 352–353 (1979).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Plazas.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plazas, J. Noncommutative Geometry of Groups Like Γ0(N). P-Adic Num Ultrametr Anal Appl 11, 61–76 (2019). https://doi.org/10.1134/S2070046619010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046619010047

Key words

Navigation