Skip to main content
Log in

Enzyme Activity as an Indicator of the Ecological State of Alluvial Soils (Using the Example of the Zeya River)

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The regulation of river flows by constructing hydroelectric power plants and dams leads to a significant transformation of the floodplain ecosystems downstream and their components. One way to assess the ecological state of natural landscapes is to determine enzymatic activity. However, the global literature has very little data on the enzymatic activity in floodplain landscapes, not only disturbed but also natural ones. This results mainly from the difficulties of studying floodplain areas, as they are highly dynamic natural objects with strong variations of properties and parameters, both in space and time. In this work, we partially fill in this gap by showing whether the activity of enzymes can be used to assess the ecological state of floodplain soils with the long-term regulation of the river flow. The Zeya River has been regulated by the Zeya Hydroelectric Power Station since 1975. We have determined the activity of enzymes (phosphatases, ureases, catalases, polyphenol oxidases, and peroxidases) in five types of floodplain landscapes: meadow on the riverine floodplain; meadow, arable land, and forest on the central floodplain; and a swamp in the backswamp depression. The high activity of phosphatase (max. up to 10 mg/g) and low activity of urease (max. up to 0.55 mg/g) and catalase (max. up to 0.55 g/cm3) have been determined. The activities of polyphenol oxidase (max. up to 85 mg/100 g) and peroxidase (max. up to 290 mg/100 g), expressed through the humus accumulation coefficient (max. 41%), indicate the average level of floodplain soil fertility. The diversity of enzymes has been evaluated using Pielou’s index and geometric mean. Under the long-term regulation of the river flow, the highest levels of enzymatic activity have been determined for the soils under the floodplain forest and the lowest for arable soils. However, we have not identified a specific soil parameter that would reliably affect all enzymes. Phosphatase, urease, and catalase exhibit significant positive relationships with exchangeable acidity. Catalase has been characterized by strong positive relationships with organic matter and negative with pH. The data allow us to state that the long-term regulation of river flow leads to a decrease in the activity and diversity of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Acosta-Martínez, V. and Tabatabai, M., Enzyme activities in a limed agricultural soil, Biol. Fertil. Soils, 2000, vol. 31, pp. 85–91.

    Article  Google Scholar 

  2. Adetunji, A.T., Lewu, F.B., Mulidzi, R., and Ncube, B., The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review, J. Soil Sci. Plant Nutr., 2017, vol. 17, no. 3, pp. 794–807.

    Article  CAS  Google Scholar 

  3. Alef, K. and Nannipieri, P., Methods in Applied Soil Microbiology and Biochemistry, Acad. Press, 1995.

    Google Scholar 

  4. Ali, R.S., Ingwersen, J., Demyan, M.S., Funkuin, Y.N., Wizemann, H.D., Kandeler, E., and Poll, C., Modelling in situ activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems, Soil Biol. Biochem., 2015, vol. 81, pp. 291– 303.

    Article  CAS  Google Scholar 

  5. Amoros, C. and Bornette, G., Connectivity and biocomplexity in waterbodies of riverine floodplain, Freshwater Biol., 2002, vol. 47, pp. 761–776.

    Article  Google Scholar 

  6. Aon, M.A. and Colaneri, A.C., II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil, Appl. Soil Ecol., 2001, vol. 18, no. 3, pp. 255–270.

    Article  Google Scholar 

  7. Baldwin, D.S. and Mitchell, A.M., The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis, River Res. Appl., 2000, vol. 16, no. 5, pp. 457–467.

    Google Scholar 

  8. Banerjee, A., Sanyal, S., and Sen, S., Soil phosphatase activity of agricultural land: A possible index of soil fertility, Agric. Sci. Res. J., 2012, vol. 2, no. 7, pp. 412–419.

    Google Scholar 

  9. Bardgett, R.D., Mawdsley, J., Edwards, S., Hobbs, P.J., Rodwell, J.S., and Davies, W.J., Plant species effects on soil biological properties of temperate upland grasslands, Funct. Ecol., 1999, vol. 13, no. 5, pp. 650–660.

    Article  Google Scholar 

  10. Bartkowiak, A. and Lemanowicz, J., Effect of forest fire on changes in the content of total and available forms of selected heavy metals and catalase activity in soil, Soil Sci. Ann., 2017, vol. 68, no. 3, pp. 140–148.

    Article  CAS  Google Scholar 

  11. Bartosz, A., Veikko, K., and Aino, S., Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce, Soil Biol. Biochem., 2009, vol. 41, no. 10, pp. 2085–2093.

    Article  Google Scholar 

  12. Blonska, E. and Lasota, J., Biological and biochemical properties in evaluation of forest soil quality, Folia For. Pol., 2014, vol. 56, pp. 23–29.

    Google Scholar 

  13. Borowik, A., Wyszkowska, J., Kucharski, M., and Kucharski, J., Resistance of dehydrogenases, catalase, urease and plants to soil contamination with zinc, J. Elementol., 2014, vol. 19, no. 4, pp. 929–936.

    Google Scholar 

  14. Breulmann, M., Schulz, E., Weisshuhn, K., and Buscot, F., Impact of the plant community composition on labile soil organic carbon, soil microbial activity and community structure in semi-natural grassland ecosystems of different productivity, Plant Soil, 2012, vol. 352, nos. 1–2, pp. 253–265.

    Article  CAS  Google Scholar 

  15. Brockett, B.F.T., Prescott, C.E., and Grayston, S.J., Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada, Soil Biol. Biochem., 2012, vol. 44, no. 1, pp. 9–20.

    Article  CAS  Google Scholar 

  16. Brzezińska, M., Stępniewska, Z., and Stępniewski, W., Dehydrogenase and catalase activity of soil irrigated with municipal wastewater, Pol. J. Environ. Stud., 2001, vol. 10, no. 5, pp. 307–311.

    Google Scholar 

  17. Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., Weintraub, M.N., and Zoppini, A., Soil enzymes in a changing environment: current knowledge and future directions, Soil Biol. Biochem., 2013, vol. 58, pp. 216–234.

    Article  CAS  Google Scholar 

  18. Chunderova, A.I., Activity of polyphenol oxidase and peroxidase in sod-podzolic soils, Pochvovedenie, 1970, no. 7, pp. 22–28.

  19. Chunderova, A.I., Biochemical activity of microflora and soil fertility, in Agronomicheskaya mikrobiologiya (Agronomic Microbiology), Muromtsev, G.S., Ed., Leningrad: Koloss, 1976, pp. 47–82.

  20. Condron, L.M., Turner, B.L., Cade-Menun, B.J., Sims, J., and Sharpley, A., Chemistry and dynamics of soil organic phosphorus, in Phosphorus: Agriculture and the Environment, Sims, J.T. and Sharpley, A.N., Eds., 2005, pp. 87–121.

    Google Scholar 

  21. Corstanje, R., Schulin, R., and Lark, R., Scale dependent relationships between soil organic carbon and urease activity, Eur. J. Soil Sci., 2007, vol. 58, pp. 1087–1095.

    Article  CAS  Google Scholar 

  22. Daradick, S., Soil Microbial Enzyme Activity and Nutrient Availability in Response to Green Tree Retention Harvesting in Coastal British Columbia, Vancouver: Univ. B. C., 2007.

    Google Scholar 

  23. Das, S.K. and Varma, A., Role of enzymes in maintaining soil health, in Soil Enzymology, Shukla, G. and Varma, A., Eds., Springer-Verlag, 2010, pp. 25–42.

    Google Scholar 

  24. De Barros, J.A., de Medeiros, E.V., da Costa, D.P., Duda, G.P., de Sousa Lima, J.R., dos Santos, U.J., Antonino, A.C., and Hammecker, C., Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils, Arch. Agron. Soil Sci., 2019, vol. 66, no. 4, pp. 458–472.

    Article  Google Scholar 

  25. dos Santos Teixeira, A.F., Silva, S.H., Soares, de C.T., Silva, A.O., Azarias, G.A., de Souza, and Moreira, F.M., Soil physicochemical properties and terrain information predict soil enzymes activity in phytophysiognomies of the Quadrilátero Ferrífero region in Brazil, Catena, 2021, vol. 199, art. ID 105083.

    Article  CAS  Google Scholar 

  26. Dynesius, M. and Nilsson, C., Fragmentation and flow regulation of river systems in the northern third of the world, Science, 1994, vol. 266, no. 5186, pp. 753–762.

    Article  CAS  PubMed  Google Scholar 

  27. Erman, J.E. and Vitello, L.B., Yeast cytochrome c peroxidase: mechanistic studies via protein engineering, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2002, vol. 1597, pp. 193–220.

    Article  CAS  Google Scholar 

  28. Esimbekovaa, E.N., Torgashinaa, I.G., Kalyabinaa, V.P., and Kratasyuka, V.A., Enzymatic biotesting: scientific basis and application, Contemp. Probl. Ecol., 2021, vol. 14, no. 3, pp. 290–304.

    Article  Google Scholar 

  29. Fekete, I., Lajtha, K., Kotroczó, Z., Várbíró, G., Varga, C., Tóth, J.A., Demeter, I., Veperdi, G., and Berki, I., Long term effects of climate change on carbon storage and tree species composition in a dry deciduous forest, Glob. Change Biol., 2017, vol. 23, no. 8, pp. 3154–3168.

    Article  Google Scholar 

  30. Finkel, T. and Holbrook, N.J., Oxidants, oxidative stress and the biology of ageing, Nature, 2000, vol. 408, no. 6809, pp. 239–247.

    Article  CAS  PubMed  Google Scholar 

  31. Follmer, C., Insights into the role and structure of plant ureases, Phytochemistry, 2008, vol. 69, pp. 18–28.

    Article  CAS  PubMed  Google Scholar 

  32. George, T.S., Gregory, P.J., Wood, M.K., Read, D.B., and Buresh, R.J., Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize, Soil Biol. Biochem., 2002, vol. 34, pp.1487–1494.

    Article  CAS  Google Scholar 

  33. Gianfreda, L. and Bollag, J.M., Influence of natural and anthropogenic factors on enzyme activity in soil, in Soil Biochemistry, Stotzky, G. and Bollag, J.M., Eds., New York: Marcel Dekker, 1996, pp. 123–193.

    Google Scholar 

  34. Gömöryová, E., The diversity of soil microorganisms, in The Soil Conditions of the Day, Kobza, J., Ed., Slovakia: Res. Inst. Soil Sci., 2008, pp. 155–160.

    Google Scholar 

  35. Gömöryová, E., Střelcová, K., Škvarenina, J., and Gömöry, D., Responses of soil microorganisms and water content in forest floor horizons to environmental factors, Eur. J. Soil Biol., 2013, vol. 55, pp. 71–76.

    Article  Google Scholar 

  36. Gorodnichev, R.M., Metody ekologicheskikh issledovanii. Osnovy statisticheskoi obrabotki dannykh (Methods of Ecological Research. Fundamentals of Statistical Data Processing), Yakutsk: Sev.-Vost. Fed. Univ., 2019.

  37. Gusev, M.N., Features of the dynamics of modern riverbed processes of the Zeya river in its middle and lower reaches, Geogr. Prir. Resur., 1990, no. 1, pp. 82–92.

  38. Gusev, M.N., Morfodinamika dnishcha doliny Verkhnego Amura (Morphodynamics of the Bottom of the Upper Amur Valley), Vladivostok: Dal’nauka, 2002.

  39. Hobbie, S.E., Effects of plant species on nutrient cycling, Trends Ecol. Evol., 1992, vol. 7, pp. 336–339.

    Article  CAS  PubMed  Google Scholar 

  40. Huang, N., Wang, Z., Liu, D., and Niu, Z., Selecting sites for converting farmlands to wetlands in the Sanjiang plain, Northeast China, based on remote sensing and GIS, Environ. Manage., 2010, vol. 46, pp. 790–800.

    Article  PubMed  Google Scholar 

  41. Huličová, P., Fazekašová, D., and Fazekaš, J., Impact of flooding on soil enzyme activity in environmentally sensitive areas, Carpathian J. Earth Environ. Sci., 2018, vol. 13, no. 2, pp. 567–574.

    Article  Google Scholar 

  42. Johnson, S.C., Yang, M.P., and Murthy, P.N., Heterologous expression and functional characterization of a plant alkaline phytase in Pichia pastoris, Protein Expression Purif., 2010, vol. 74, pp. 196–203.

    Article  CAS  Google Scholar 

  43. Kai, M., Takazumi, K., Adachi, H., Wasaki, J., Shinano, T., and Osaki, M., Cloning and characterization of four phosphate transporter cDNAs in tobacco, Plant Sci., 2002, vol. 163, pp. 837–846.

    Article  CAS  Google Scholar 

  44. Kalembasa, S. and Symanowicz, B., Enzymatic activity of soil after applying various waste organic materials, ash, and mineral fertilizers, Pol. J. Environ. Stud., 2012, vol. 21, pp. 1635–1641.

    CAS  Google Scholar 

  45. Kang H., Stanley E.H. Effects of levees on soil microbial activity in a large river floodplain, River Res. Applic., 2005, vol. 21, pp. 19–25.

    Article  Google Scholar 

  46. Kazeev, K.S., Trushkov, A.V., Odabashyan, M.Y., and Kolesnikov, S.I., Postagrogenic changes in the enzyme activity and organic carbon content in chernozem during the first three years of fallow regime, Eurasian Soil Sci., 2020, vol. 53, no. 7, pp. 995–1003.

    Article  CAS  Google Scholar 

  47. Khaziev, F.H., Sistemno-ekologicheskii analiz fermentativnoi aktivnosti pochv (System-Ecological Analysis of the Enzymatic Activity of Soils), Moscow: Nauka, 1982.

  48. Khaziev, F.H., Metody pochvennoi enzimologii (Methods of Soil Enzymology), Moscow: Nauka, 2005.

  49. Khaziev, F.H., Khabirov, I.K., and Agafarova, Ya.M., Ecological analysis of biochemical processes in named and drained soils, Pochvovedenie, 1983, no. 5, pp. 80–85.

  50. Kourtev, P.S., Ehrenfeld, J.G., and Haggblom, M., Exotic plant species alter the microbial community structure and function in the soil, Ecology, 2002, vol. 83, pp. 3152–3166.

    Article  Google Scholar 

  51. Kuscu, I.S.K., Cetin, M., Yiğit, N., Savaci, G., and Sevik, H., Relationship between enzyme activity (urease-catalase) and nutrient element in soil use, Pol. J. Environ. Stud., 2018, vol. 27, no. 5, pp. 2107–2112.

    Article  CAS  Google Scholar 

  52. Kuzmina, Z.V., in The consequences of changing the regime of river flow for floodplain ecosystems when creating small (low-pressure) hydraulic structures, in Otsenka vliyaniya izmeneniya rezhima vod sushi na nazemnye ekosistemy (Assessment of the Impact of Changes in the Regime of Land Waters on Terrestrial Ecosystems), Novikov, N.M., Ed., Moscow: Nauka, 2005, pp. 134–163.

    Google Scholar 

  53. Kuzmina, Z.V., Treshkin, S.E., and Shinkarenko, S.S., The influence of river flow regulation and climate change on the dynamics of terrestrial ecosystems of the lower Volga, Arid Ecosyst., 2018, vol. 8, no. 4, pp. 231–244.

    Article  Google Scholar 

  54. Lagomarsino, A., Benedetti, A.M., Marinari, S., Pompili, L., Moscatelli, M.C., Roggero, P.P., Lai, R., Ledda, L., and Grego, S., Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem, Biol. Fertil. Soils, 2011, vol. 47, no. 3, pp. 283–291.

    Article  Google Scholar 

  55. Lair, G.J., Zehetner, F., Fiebig, M., Gerzabek, M.H., van Gestel, C.A., Hein, T., Hohensinner, S., Hsu, P., Jones, K.C., Jordan, G., Koelmans, A.A., Poot, A., Slijkerman, D., Totsche, K.U., Bondar-Kunze E., Barth J.A. How do long-term development and periodical changes of river–floodplain systems affect the fate of contaminants? Results from European rivers, Environ. Pollut., 2009, vol. 157, pp. 3336–3346.

    Article  CAS  PubMed  Google Scholar 

  56. Landi, L., Valori, F., Ascher, J., Renella, G., Falchini, L., and Nannipieri, P., Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils, Soil Biol. Biochem., 2006, vol. 38, no. 3, pp. 509–516.

    Article  CAS  Google Scholar 

  57. Machuca, A., Cuba-Día, M., and Córdova, C., Enzymes in the rhizosphere of plants growing in the vicinity of the Polish Arctowski Antarctic Station, J. Soil Sci. Plant Nutr., 2015, vol. 15, pp. 833–838.

    CAS  Google Scholar 

  58. Manzoni, S., Schimel, J.P., and Porporato, A.M., Responses of soil microbial communities to water stress: results from a meta-analysis, Ecology, 2012, vol. 93, pp. 930–938.

    Article  PubMed  Google Scholar 

  59. Maphuhla, N.G., Lewu, F.B., and Oyedeji, O.O., The effects of physicochemical parameters on analysed soil enzyme activity from Alice landfill site, Int. J. Environ. Res. Public Health, 2021, vol. 18, no. 1, art. ID 221.

    Article  CAS  Google Scholar 

  60. Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I.A., Ciais, P., Goll, D.S., Richter, A., Obersteiner, M., Asensio, D., and Peñuelas, J., Global patterns of phosphatase activity in natural soils, Sci. Rep., 2017, vol. 7, no. 1, art. ID 1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martynov, A.V., Structure and properties of the soil cover of the floodplain of the middle course of the Zeya river under controlled flow conditions, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2010, no. 6, pp. 111–116.

  62. Martynov, A.V., Influence of river flow regulation on the soil cover of floodplains of large rivers of the Zeisk-Selemdzhinskaya plain, Vestn. Sev.-Vost. Nauchn. Tsentra Dal’nevost. Otd. Ross. Akad. Nauk, 2016, no. 4, pp. 40–51.

  63. Martynov, A.V., Available for plants phosphorus in floodplain catenas of the Amur river, Byull. Pochv. Inst. im. V. V. Dokuchaeva, 2021, vol. 107, pp. 61–91.

    Google Scholar 

  64. Mayor, A.G., Goiran, S.B., Vallejo, V.R., and Bautista, S., Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands, Sci. Total Environ., 2016, vol. 573, pp. 1209–1216.

    Article  CAS  PubMed  Google Scholar 

  65. Meysner, T., Szajdak, L., and Ku, J., Impact of the farming systems on the content of biologically active substances and the forms of nitrogen in the soils, Agron. Res., 2006, vol. 4, pp. 531–542.

    Google Scholar 

  66. Mobley, H., Island, M.D., and Hausinger, R.P., Molecular biology of microbial ureases, Microbiol. Rev., 1995, vol. 59, pp. 451–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moghimian, N., Hosseini, S.M., Kooch, Y., and Darki, B.Z., Impacts of changes in land use/cover on soil microbial and enzyme activities, Catena, 2017, vol. 157, pp. 407–414.

    Article  CAS  Google Scholar 

  68. Mohammadi, K., Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production, Am.-Eurasian J. Agric. Environ. Sci., 2011, vol. 10, no. 3, pp. 330–337.

    Google Scholar 

  69. Motta, P.E.F., Curi, N., Siqueira, J.O., Raij, B., Furtini, N.A.E., and Lima, J.M., Adsorption and forms of phosphorus in latosols: influence of mineralogy and use, Rev. Bras. Cienc. Solo, 2002, vol. 26, pp. 349–359.

    Article  CAS  Google Scholar 

  70. Murtazina, S.G., Gaisin, I.A., and Murtazin, M.G., Praktikum po pochvovedeniyu (Workshop on Soil Science), Kazan: Kazan. Gos. S-kh. Akad., 2006.

  71. Nannipieri, P., Giagnoni, L., Landi, L., and Renella, G., Role of phosphatase enzymes in soil, in Phosphorus in Action, Bünemann, E., Ed., Springer-Verlag, 2011, pp. 215–243.

    Google Scholar 

  72. Nannipieri, P., Kandeler, E., and Ruggiero, P., Enzyme activities and microbiological and biochemical processes in soil, in Enzymes in the Environment: Activity, Ecology and Applications, Richard, G.B. and Richard, P.D., Eds., Boca Raton: CRC, 2002, pp. 1–34.

    Google Scholar 

  73. Nelson, D.L. and Cox, M.M., Principles of biochemistry, London: Macmillan Press, 2000.

    Google Scholar 

  74. Nikitina, O.I., The impact of flow regulation on the aquatic ecosystems of the Amur basin and measures for their conservation, Cand. Sci. (Geogr.) Dissertation, Moscow, 2021.

  75. Nilsson, C., Reidy, C.A., Dynesius, M., and Revenga, C., Fragmentation and flow regulation of the world’s large river systems, Science, 2005, vol. 308, no. 5720, pp. 405–408.

    Article  CAS  PubMed  Google Scholar 

  76. Novitsky, M.V., et al., Laboratorno-prakticheskiye zanyatiya po pochvovedeniyu (Laboratory and Practical Classes in Soil Science), St. Petersburg: Prospekt Nauki, 2009.

  77. Passardi, F., Bakalovic, N., Teixeira, F.K., Margis-Pinheiro, M., Penel, C., and Dunand, C., Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes, Genomics, 2007, vol. 89, pp. 567–579.

    Article  CAS  PubMed  Google Scholar 

  78. Paul, E.A., Soil Microbiology, Ecology, and Biochemistry, Oxford: Academic Press, 2007.

    Google Scholar 

  79. Paz-Ferreiro, J., Gascó, G.R., Gutiérrez, B., and Méndez, A., Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil, Biol. Fertil. Soils, 2012, vol. 48, no. 5, pp. 511–517.

    Article  Google Scholar 

  80. Pinay, G., Clemen,t J.C., and Naiman, R.J., Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems, Environ. Manage., 2002, vol. 30, pp. 481–491.

    Article  PubMed  Google Scholar 

  81. Piotrowska-Długosz, A. and Charzyński, P., The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland), J. Soils Sediments, 2015, vol. 15, pp. 47–59.

    Article  Google Scholar 

  82. Raiesi, F. and Beheshti, A., Microbiological indicators of soil quality and degradation following conversion of native forests to continuous croplands, Ecol. Indic., 2015, vol. 50, pp. 173–185.

    Article  CAS  Google Scholar 

  83. Rejsek, K., Vranova, V., Pavelka, M., and Formanek, P., Acid phosphomonoesterase (E.C. 3.1.3.2) location in soil, J. Plant Nutr. Soil Sci., 2012, vol. 175, no. 2, pp. 196–211.

    Article  CAS  Google Scholar 

  84. Sardans, J. and Penuelas, J., Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest, Soil Biol. Biochem., 2005, vol. 37, no. 3, pp. 455–461.

    Article  CAS  Google Scholar 

  85. Seraya, G.P. and Shubin, F.M., Features of growth and development of pioneer plants when growing them on coal ash, Rast. Prom. Sreda, 1976, no. 4, pp. 56–62.

  86. Shcherbakova, T.A., Fermentativnaya aktivnosti’ pochv i transformatsiya organicheskogo veshchestva (Enzymatic Activity of Soils and Transformation of Organic Matter), Minsk: Nauka Tekh., 1983.

  87. Shishov, L.L., Tonkonogov, V.D., Lebedeva, I.I., and Gerasimova, M.I., Klassifikatsiya i diagnostika pochv Rossii (Classification and Diagnostics of Soils of Russia), Smolensk: Oikumena, 2004.

  88. Shiyin, L., Lixiao, N., Panying, P., Cheng, S.P., and Liansheng, W., Effects of pesticides and their hydrolysates on catalase activity in soil, Bull. Environ. Contam. Toxicol., 2004, vol. 72, pp. 600–606.

    Article  CAS  PubMed  Google Scholar 

  89. Sinsabaugh, R.L., Phenol oxidase, peroxidase and organic matter dynamics of soil, Soil Biol. Biochem., 2010, vol. 42, no. 3, pp. 391–404.

    Article  CAS  Google Scholar 

  90. Spohn, M. and Kuzyakov, Y., Phosphorus mineralization can be driven by microbial need for carbon, Soil Biol. Biochem., 2013, vol. 61, pp. 69–75.

    Article  CAS  Google Scholar 

  91. Starchenko, V.M., Flora of meadows in the streams of the Zeya reservoir, in Ekologicheskiye posledstviya stroitel’stva Zeiskoi Gidroelekrostantsii (The Environmental Consequences of the Construction of the Zeya Hydroelectric Power Station), Gotvanskii, V.I., Ed., Blagoveshchensk, 1990, pp. 188–243.

  92. Tan, X., Xie, B., Wang, J., He, W., Wang, X., and Wei, G., County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment, Sci. World J., 2014, vol. 2014, art. ID 535768.

    Article  Google Scholar 

  93. Tarafdar, J.C. and Claassen, N., Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases, Biol. Fertil. Soils, 1988, vol. 5, pp. 308–312.

    Article  CAS  Google Scholar 

  94. Thoms, M.C., Floodplain-river ecosystems: lateral connections and the implications of human interference, Geomorphology, 2003, vol. 56, pp. 335–349.

    Article  Google Scholar 

  95. Trasar-Cepeda, C., Leiros, M.C., and Gil-Stores, F., Hydrolytic enzyme activities in- agricultural and forest soils. Some implications for their use as indicators of soil quality, Soil Biol. Biochem., 2008, vol. 40, no. 9, pp. 2146–2155.

    Article  CAS  Google Scholar 

  96. Trasar-Cepeda, C., Leiros, M.C., Seoane, S., and Gil-Sotres, F., Limitations of soil enzymes as indicators of soil pollution, Soil Biol. Biochem., 2000, vol. 32, pp. 1867–1875.

    Article  CAS  Google Scholar 

  97. Unger, I.M., Kennedy, A.C., and Muzika, R.M., Flooding effects on soil microbial communities, Appl. Soil Ecol., 2009, vol. 2, pp. 1–8.

    Article  Google Scholar 

  98. Valett, H.M., Baker, M.A., Morrice, J.A., Crawford, C.S., Molles, M.C., Dahm, C.N., Moyer, D.L., Thibault, J.R., and Ellis, L.M., Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain, Ecology, 2005, vol. 86, no. 1, pp. 220–234.

    Article  Google Scholar 

  99. Wang, B., Xue, S., Liu, G., Zhang, G., Li, G., and Ren, Z., Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China, Catena, 2012, vol. 92, pp. 186–195.

    Article  CAS  Google Scholar 

  100. Wang, P., Wang, Y., and Wu, Q.S., Effect of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China, Soil Tillage Res., 2016, vol. 155, pp. 54–61.

    Article  Google Scholar 

  101. Wei, D., Jin-liang, Z., and Yan, H., Total N, total P and organic matters content in floodplain soils of Xianghai Nature Reserve, J. Geogr. Sci., 2002, vol. 12, no. 1, pp. 58–64.

    Article  Google Scholar 

  102. Wu, J., Wang, H., Li, G., Ma, W., Wu, J., Gong, Y., and Xu, G., Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau, Sci. Rep., 2020, vol. 10, art. ID 21271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xun, W., Huang, T., Zhao, J., Ran, W., Wang, B., Shen, Q., and Zhang, R., Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities, Soil Biol. Biochem., 2015, vol. 90, pp. 10–18.

    Article  CAS  Google Scholar 

  104. Yakovleva, O.V., Phytotoxicity of aluminum ions, Tr. Prikl. Bot., Genet. Sel., 2018, vol. 179, no. 3, pp. 315–331.

    Google Scholar 

  105. Yang, Z.X., Liu, S.Q., Zheng, D.W., and Feng, S.D., Effects of cadmium, zinc and lead on soil enzyme activities, J. Environ. Sci., 2006, vol. 18, no. 6, pp. 1135–1141.

    Article  Google Scholar 

  106. Yao, X.H., Min, H., Lu, Z.H., and Yuan, H., Influence of Acetamipri on soil enzymatic activities and respiration, Eur. J. Soil Biol., 2006, vol. 42, pp. 120–126.

    Article  CAS  Google Scholar 

  107. Zantua, M. and Bremner, J.M., Stability of urease in soil, Soil Biol. Biochem., 1977, vol. 9, pp. 135–140.

    Article  CAS  Google Scholar 

  108. Zhao, Q., Tang, J., Li, Z., Yang, W., and Duan, Y., The influence of soil physico-chemical properties and enzyme activities on soil quality of saline-alkali agroecosystems in western Jilin Province, China, Sustainability, 2018, vol. 10, no. 5, art. ID 1529.

    Article  Google Scholar 

  109. Zocatelli, R., Moreira-Turcq, P., Bernardes, M.C., Turcq, B., Cordeiro, R.C., Gogo, S., Disnar, J.R., and Boussafir, M., Sedimentary evidence of soil organic matter input to the Curuai Amazonian floodplain, Org. Geochem., 2013, vol. 63, pp. 40–47.

    Article  CAS  Google Scholar 

  110. Zvyagintsev, D.G., Biological activity of soils and scales for assessing some of its indicators, Pochvovedenie, 1978, no. 6, pp. 48–54.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Martynov or O. A. Piletskaya.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynov, A.V., Piletskaya, O.A. Enzyme Activity as an Indicator of the Ecological State of Alluvial Soils (Using the Example of the Zeya River). Contemp. Probl. Ecol. 15, 494–507 (2022). https://doi.org/10.1134/S1995425522050080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522050080

Keywords:

Navigation