Skip to main content
Log in

Effect of Keggin Heteropoly Acids on Human Embryo Fibroblast Cells

  • Nanobiology
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The strong dependence of cytotoxicity of Keggin heteropoly acids [XM12O40]n, X = Si or P, M = Mo and W, n = 3 or 4 on chemical composition is demonstrated using the example of human embryo fibroblast cells based on the results of diagnostics using impedance monitoring, scanning electron microscopy, and measurements of visible cell sizes. The explanation of this dependence based on the role of hydrolytic stability of multiply charged anions in the development of cytotoxicity of these compounds is suggested. The results make it possible to suggest a new mechanism for the development of selectivity of polyoxometalate cytotoxicity relative to the studied cells. The differentiated cytotoxic activity of polyoxometalates relative to oncogenic cells is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Pop, Heteropoly-and Isopolyoxometallates (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  2. D.-L. Long, E. Burkholder, and L. Cronin, “Polyoxometalate clusters, nanostructures, and materials: from self assembly to designer materials and devices,” Chem. Soc. Rev. 36, 105–121 (2007).

    Article  Google Scholar 

  3. G. I. T. Cooper, P. I. Kitson, R. Winter, M. Zagnoni, D.-L. Long, and L. Cronin, “Modular redox-active inorganic chemical cells: ICHELLs,” Angew. Chem., Int. Ed. 50, 10373–10376 (2011).

    Article  Google Scholar 

  4. D. Karimian, B. Yadollahi, and V. Mirkhani, “Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery,” Microporous Mesoporous Mater. 247, 23–30 (2017).

    Article  Google Scholar 

  5. W. Lu, Zh. Baibin, and L. Jiaren, “Anticancer polyoxometalates,” Prog. Chem. 25, 1131–1141 (2013).

    Google Scholar 

  6. J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi, “Polyoxometalates in medicine,” Chem. Rev. 98, 327–358 (1998).

    Article  Google Scholar 

  7. S. Shigeta, S. Mori, T. Yamase, N. Yamamoto, and N. Yamamoto, “Anti-RNA virus. Activity of polyoxometalates,” Biomed. Pharmacother. 60, 211–219 (2006).

    Article  Google Scholar 

  8. H. Yanagie, A. Ogata, S. Mitsui, T. Hisa, T. Yamase, and M. Eriguchi, “Anticancer activity of polyoxomolybdate,” Biomed. Pharmacother. 60, 349–352 (2006).

    Article  Google Scholar 

  9. L. Wang, K. Yu, B.-B. Zhou, Z.-H. Su, S. Gao, L.-L. Chu, and J.-R. Liu, “The inhibitory effects of a new cobalt-based polyoxometalate on the growth of human cancer cells,” Dalton Trans. 43, 6070–6078 (2014).

    Article  Google Scholar 

  10. L. Fu, H. Gao, M. Yan, S. Li, X. Li, Z. Dai, and S. Liu, “Polyoxometalate-based organic-inorganic hybrids as antitumor drugs,” Small 11, 2938–2945 (2015).

    Article  Google Scholar 

  11. I. A. Suetina, M. V. Mezentseva, E. A. Gushchina, F. A. Lisitsin, L. I. Russu, O. A. Lopatina, E. L. Firsova, S. A. Kovalevskii, B. A. Budanov, F. I. Dalidchik, A. S. Seleznev, R. A. Morozov, and E. A. Gushchina, “Study of growth activity and viability of cultured human embryo fibroblasts under the influence of polyoxametalates,” Inform. Byull. Kletochn. Kul’tury, No. 31, 67–78 (2015).

    Google Scholar 

  12. O. A. Lopatina, O. V. Baklanova, I. A. Suetina, E. I. Isaeva, E. A. Gushchina, L. V. Russu, F. A. Lisitsin, S. A. Kovalevskii, B. A. Budanov, F. I. Dalichik, and M. V. Mezentseva, “Cytotoxic and antiviral effect of polyoxometalates in vitro experiments,” in Proceedings of the 22nd Russian National Congress on Human and Medicine, Moscow, 2015, p. 230.

    Google Scholar 

  13. O. A. Lopatina, O. V. Baklanova, I. A. Suetina, E. I. Isaeva, E. A. Gushchina, L. V. Russu, F. A. Lisitsin, S. A. Kovalevskii, B. A. Budanov, F. I. Dalichik, and M. V. Mezentseva, “Toxic effect of polyoxometalates (POMs) with Keggin’s structure on normal and tumor cells culture,” Biol. Radioelektron., No. 3, 42–49 (2015).

    Google Scholar 

  14. Q. Liu, C. Wu, H. Cai, N. Hu, J. Zhou, and P. Wang, “Cell-based biosensors and their application in biomedicine,” Chem. Rev. 114, 6423–6461 (2014).

    Article  Google Scholar 

  15. F. Asphahani, M. Thein, K. Wang, D. Wood, S.-S. Wong, J. Xu, and M. Zhang, “Real-time characterization of cytotoxicity using single-cell impedance monitoring,” Analyst 137, 3011–3019 (2012).

    Article  Google Scholar 

  16. J. Z. Xing, L. Zhu, J. A. Jackson, S. Gabos, X. J. Sun, X. B. Wang, and X. Xu, “Dynamic monitoring of cytotoxicity on microelectronic sensors,” Chem. Res. Toxicol. 18, 154–161 (2005).

    Article  Google Scholar 

  17. R. A. Cardone, V. Casavola, and S. J. Reshkin, “The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis,” Nat. Rev. Cancer 5, 786–795 (2005).

    Article  Google Scholar 

  18. M. Anderson, A. Moshnikova, D. M. Engelman, Y. Reshetnyak, and O. Andreev, “Probe for the measurement of cell surface pH in vivo and ex vivo,” Proc. Natl. Acad. Sci. U.S.A. 113, 8177–8181 (2016).

    Article  Google Scholar 

  19. X. Lopez, J. A. Fernández, and J. M. Poblet, “Redox properties of polyoxometalates: new insights on the anion charge effect,” Dalton Trans., No. 9, 1162–1167 (2006).

    Article  Google Scholar 

  20. M. H. Ross, L. J. Romrell, and G. I. Kaye, Histology—A Text and Atlas, 3rd ed. (Williams and Wilkins, Baltimore, 1995).

    Google Scholar 

  21. I. Holclajtner-Antunovi, V. Kunti, Z. Jurani, I. Filipovi, U. Mio, and T. Stanojkovi, “Study of some polyoxometalates of Keggin’s type as potential antitumor agents,” Jugoslav Med. Biohem. 23, 25–30 (2004).

    Article  Google Scholar 

  22. Y. Liu, S. Tian, S. Liu, and E. Wang, “In vitro inhibitory effect of polyoxometalates on human tumor cells,” Transit. Met. Chem. 30, 113–117 (2005).

    Article  Google Scholar 

  23. S. Dianat, S. Tangestaninejad, B. Yadollahi, A. K. Bordbar, M. Moghadam, V. Mirkhani, and I. Mohammadpoor-Baltork, “Stability investigation of some heteropolyoxotungstate and heteropolyoxomolybdate salts in buffer solutions,” J. Mol. Liq. 174, 76–79 (2012).

    Article  Google Scholar 

  24. D. Bajuk-Bogdanovic, I. Holclajtner-Antunovic, M. Todorovic, U. Mio, and J. Zakrzewska, “A study of 12-tungstosilicic and 12-molybdophosphoric acids in solution,” J. Serb. Chem. Soc. 73, 197–209 (2008).

    Article  Google Scholar 

  25. S. Harguindey, D. Stanciu, J. Devesab, K. Alfarouk, R. Cardone, J. Polo, P. Devesa, C. Rauch, G. Orive, E. Anitua, S. Roger, and S. Reshkin, “Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases,” Seminars Cancer Biol. 43, 157–179 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kovalevskii.

Additional information

Original Russian Text © S.A. Kovalevskii, O.A. Lopatina, F.I. Dalidchik, O.V. Baklanova, I.A. Suetina, L.I. Russu, E.A. Gushchina, E.I. Isaeva, M.V. Mezentseva, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalevskii, S.A., Lopatina, O.A., Dalidchik, F.I. et al. Effect of Keggin Heteropoly Acids on Human Embryo Fibroblast Cells. Nanotechnol Russia 13, 400–405 (2018). https://doi.org/10.1134/S1995078018040080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018040080

Navigation