Skip to main content
Log in

Direct plasmadynamic synthesis and preparation of superdispersed Ti–Si–N compositions

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The preparation of nanodisperse titanium nitride and titanium carbide compositions by the direct plasmadynamic synthesis in the Ti–Si–N system is described in this paper. The use of the method of direct plasmadynamic synthesis allows one to achieve good mixing of the product and to create ceramic materials without areal defects produced by local agglomerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jing Wanga, Yanxin Anb, Haifeng Liangc, Yu Tonga, Tianwen Guoa, and Chufan Maa, “The effect of different titanium nitride coatings on the adhesion of candida albicans to titanium,” Arch. Oral Biol. 58, 1293–1301 (2013).

    Article  Google Scholar 

  2. Yeong Yan Guua, Jen Fin Lina, Chi-Fong Aib, “The tribological characteristics of titanium nitride, titanium carbonitride and titanium carbide coatings,” Thin Solid Films 302, 193–200 (1997).

    Article  Google Scholar 

  3. Ching-Huan Lee, Horng-Hwa Lu, Chang-An Wang, Pramoda K. Nayak, and Jow-Lay Huang, “Microstructure and mechanical properties of TiN/Si3N4 nanocomposites by spark plasma sintering (SPS),” J. Alloys Compd. 508, 540–545 (2010).

    Article  Google Scholar 

  4. J. L. Huang, S. Y. Chen, and M. T. Lee, “Microstructure, chemical aspects and mechanical properties of TiB2/Si3N4 and TiN/Si3N4 composites,” J. Mater. Res. 9, 2349–2354 (1994).

    Article  Google Scholar 

  5. Z. Guo, G. Blugan, R. Kirchner, M. Reece, T. Graule, and J. Kuebler, “Microstructure and electrical properties of Si3N4/TiN composites sintered by hot pressing and spark plasma sintering,” Ceram. Int. 33, 1223–1229 (2007).

    Article  Google Scholar 

  6. G. Savelli, S. Silveira Stein, G. Bernard-Granger, P. Faucherand, and L. Montès, “Growth and thermal properties of doped monocrystalline titanium-silicide based quantum dot superlattices,” Superlatt. Microstruct. 92, 249–255 (2016).

    Article  Google Scholar 

  7. M. Hannula, K. Lahtonen, H. Ali-Löytty, A. A. Zakharov, T. Isotalo, J. Saari, and M. Valden, “Fabrication of topographically microstructured titanium silicide interface for advanced photonic applications,” Scripta Mater. 119, 76–81 (2016).

    Article  Google Scholar 

  8. D. Vojtech, P. Novák, P. Machác, M. Mort’aniková, and K. Jurek, “Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment,” J. Alloys Compd. 464, 179–184 (2008).

    Article  Google Scholar 

  9. Xiaozhe Cheng, Yanhui Wang, Junjie Huang, Jianbing Zang, Jing Lu, Yiqing Yu, and Xipeng Xu, “Effect of gradient TiC-Ti5Si3-TiSi2 barrier layer on SiC in SiCborosilicate glass composites,” Surf. Coat. Technol. 275, 349–356 (2015).

    Article  Google Scholar 

  10. D. P. Riley, C. P. Oliver, and E. H. Kisi, “In-situ neutron diffraction of titanium silicide, Ti5Si3, during selfpropagating high-temperature synthesis (SHS),” Intermetallics 14, 33–38 (2006).

    Article  Google Scholar 

  11. Dongqing Zhang, Lili Zheng, Xiaoyu Hu, and Hui Zhang, “Numerical studies of arc plasma generation in single cathode and three-cathode plasma torch and its impact on plasma spraying,” Int. J. Heat and Mass Transfer 98, 508–522 (2016).

    Article  Google Scholar 

  12. A. A. Sivkov, D. Yu. Gerasimov, and A. A. Evdokimov, “Influence of the supplied energy on electroerosion recovery of material in an electrotechnical accelerator,” Instrum. Exp. Tech. 57, 222–225 (2014).

    Article  Google Scholar 

  13. A. A. Sivkov, D. Yu. Gerasimov, A. S. Saigash, and A. A. Evdokimov, “Studies of multiple and frequency operation of a coaxial magnetoplasma accelerator for production of superhard nanodispersed titanium compounds,” Russ. Electrical Eng. 83, 39–44 (2012).

    Article  Google Scholar 

  14. A. A. Sivkov, A. S. Saigash, I. I. Shanenkov, D. Yu. Gerasimov, and A. A. Evdokimov, “Direct dynamic synthesis of nanodispersed powder material on titanium-base in pulsed electric-discharge plasma jet,” in Proceedings of the 7th International Forum on Strategic Technology, IFOST 2012, Tomsk, Russia, Sept. 18–21, 2012, Category No. CFP12786-PRT, Code 94712.

    Google Scholar 

  15. A. A. Sivkov, D. Y. Gerasimov, and A. A. Evdokimov, “Manufacture of an ultrafine-grained TiN-Cu composition using an erosion-type coaxial hybrid magnetoplasma accelerator,” Russ. Phys. J. 58, 1063–1067 (2015).

    Article  Google Scholar 

  16. O. L. Khasanov, E. S. Dvilis, A. O. Khasanov, Yu.A. Biryukov, A. A. Kachaev, Z. G. Bikbaeva, V. V. Polisadova, and T. V. Milovanova, “Effect of ultradisperse fraction of boron carbide powder on strength properties of ceramics produced by SPS method,” Izv. Vyssh. Uchebn. Zaved., Fiz. 55 (5/2), 270–275 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Evdokimov.

Additional information

Original Russian Text © A.A. Sivkov, D.Yu. Gerasimov, A.A. Evdokimov, A.S. Saigash, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivkov, A.A., Gerasimov, D.Y., Evdokimov, A.A. et al. Direct plasmadynamic synthesis and preparation of superdispersed Ti–Si–N compositions. Nanotechnol Russia 12, 258–268 (2017). https://doi.org/10.1134/S1995078017030120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017030120

Navigation