Skip to main content
Log in

Change in the Ignition Parameters of Nanodispersed Iron Powders During Long-Term Storage

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper, the ignition of samples pressed from nanodispersed iron powder with nanosized particles, stored after manufacturing for four years, is studied. The ignition temperature of samples pressed from an initially pyrophoric powder with the average particle diameter of 85 nm was about 105°C. As a result of the oxidation and agglomeration of the powder during long-term storage in air, the ignition temperature increased to 225°C. The ignition temperatures of nanodispersed iron powder and iron powders with average particle sizes of 3, 4.6, and 55 µm are compared. The possibility of partial restoration of the reactivity of such iron powders after their annealing in argon is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. K. Berner, V. E. Zarko, and M. B. Talawar, Combust. Explos., Shock Waves 49, 625 (2013).

    Article  Google Scholar 

  2. J. Bouillard, A. Vignes, O. Dufaud, et al., J. Hazard. Mater. 181, 873 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.094

    Article  CAS  PubMed  Google Scholar 

  3. M. I. Lerner, N. V. Svarovskaya, S. G. Psakhie, and O. V. Bakina, Nanotechnol. Russ. 4, 741 (2009)https://doi.org/10.1134/S1995078009110019

    Article  Google Scholar 

  4. Metal Nanopowders: Production, Characterization, and Energetic Applications, Eds. A. A. Gromov and U. J. Teipel (VCH, Weinheim, 2014). https://doi.org/10.1002/9783527680696

    Book  Google Scholar 

  5. K. A. Monogarov, D. B. Meerov, Yu. V. Frolov, and A. N. Pivkina, Russ. J. Phys. Chem. B 13, 610 (2019). https://doi.org/10.1134/S1990793119040250

    Article  CAS  Google Scholar 

  6. M. Hosokawa, K. Nogi, M. Naito, et al., Nanoparticle Technology Handbook, 3rd ed. (Elsevier, Amsterdam, 2007).https://doi.org/10.1016/C2017-0-01011-X

  7. A. A. Vasil’ev, E. L. Dzidziguri, M. N. Efimov, D. G. Muratov, and G. P. Karpacheva, Russ. J. Phys. Chem. B 15, 381 (2021). https://doi.org/10.1134/S1990793121030313

    Article  Google Scholar 

  8. N. V. Chukanov, T. S. Larikova, N. N. Dremova, V. V. Zakharov, I. N. Trun’kin, A. S. Burlov, V. G. Vla-senko, and G. I. Djardimalieva, Russ. J. Phys. Chem. B 14, 323 (2020). https://doi.org/10.1134/S1990793120020037

    Article  CAS  Google Scholar 

  9. M. I. Alymov, B. S. Seplyarskii, S. G. Vadchenko, V. A. Zelensky, N. M. Rubtsov, R. A. Kochetkov, A. S. Shchukin, and I. D. Kovalev, Russ. J. Phys. Chem. B 15, 352 (2021). https://doi.org/10.1134/S1990793121020135

    Article  CAS  Google Scholar 

  10. N. M. Rubtsov, B. S. Seplyarskii, and M. I. Alymov, Critical Phenomena and Size Effects in Autowave Processes with Exothermic Reactions (KUBiK, Saratov, 2019) [in Russian].

  11. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarsky, et al., Mendeleev Commun. 27, 482 (2017). https://doi.org/10.1016/j.mencom.2017.09.017

    Article  CAS  Google Scholar 

  12. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, V. A. Zelenskii, A. B. Ankudinov, I. D. Kovalev, R. A. Kochetkov, and A. S. Shchukin, Dokl. Chem. 477, 261 (2017). https://doi.org/10.1134/S0012500817110039

    Article  CAS  Google Scholar 

  13. K. Simeonidis, S. Mourdikoudis, I. Tsiaoussis, et al., Mod. Phys. Lett. B 21, 1143 (2007). https://doi.org/10.1142/S0217984907013845

    Article  CAS  Google Scholar 

  14. O. S. Kyrmakova, A. I. Sechin, and O. V. Nazarenko, J. Phys.: Conf. Ser. 881, D12027 (2017). https://doi.org/10.1088/1742-6596/881/1/012027

    Article  CAS  Google Scholar 

  15. O. B. Nazarenko, A. I. Sechin, and Y. A. Amelkovich, Met. Mater. Int. 27, 962 (2021). https://doi.org/10.1007/s12540-019-00443-8

    Article  CAS  Google Scholar 

  16. O. B. Nazarenko, Yu. A. Amelkovich, and A. I. Sechin, Appl. Surf. Sci. 321, 475 (2014). https://doi.org/10.1016/j.apsusc.2014.10.034

    Article  CAS  Google Scholar 

  17. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, V. A. Zelenskii and A. B. Ankudinov, Inorg. Mater. 53, 911 (2017).

    Article  CAS  Google Scholar 

  18. V. A. Zelenskii, M. I. Alymov, A. B. Ankudinov, et al., Perspek. Mater., No. 6, 83 (2009).

  19. A. V. Korshunov, Izv. Tomsk. Politekh. Univ. 318 (3), 5 (2011).

    Google Scholar 

  20. A. V. Mostovshchikov, A. P. Il’in, P. Yu. Chumerin, and Yu. G. Yushkov, Tech. Phys. 63, 1223 (2018).

    Article  CAS  Google Scholar 

  21. H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, 2nd ed. (ASM Int., Ohio, USA, 2010).

    Google Scholar 

  22. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths Sci., London, 1953).

    Google Scholar 

  23. G. S. Parkinson, Surf. Sci. Rep. 71, 272 (2016). https://doi.org/10.1016/j.surfrep.2016.02.001

    Article  CAS  Google Scholar 

  24. A. P. Grosvenor, B. A. Kobe, and N. S. McIntyre, Surf. Sci. 565, 151 (2004). https://doi.org/10.1016/J.SUSC.2004.06.210

    Article  CAS  Google Scholar 

  25. S. J. Roosendaal, PhD Thesis (Univ. Utrecht, Utrecht, 1999).

  26. W. Karim, A. Kleibert, U. Hartfelder, et al., J. Sci. Rep. 6, 18818 (2016). https://doi.org/10.1038/srep18818

  27. E. L. Dzidziguri, Doctoral (Tech. Sci.) Dissertation (Mosc. Inst. Steel Alloys, Moscow, 2017).

Download references

ACKNOWLEDGMENTS

The authors thank V.A. Zelensky and A.B. Ankudinov for providing nanosized iron powders for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Vadchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadchenko, S.G., Alymov, M.I. Change in the Ignition Parameters of Nanodispersed Iron Powders During Long-Term Storage. Russ. J. Phys. Chem. B 16, 236–241 (2022). https://doi.org/10.1134/S1990793122020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122020130

Keywords:

Navigation