Skip to main content
Log in

Mechanical Properties of Composites Based on Polylactide and Poly-3-Hydroxybutyrate with Rubbers

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The influence of elastomers—natural rubber (NR) and synthetic ethylene-propylene rubber (EPR)—on the morphology and physical and mechanical characteristics of composite materials based on polylactide (PLA) and poly-3-hydroxybutyrate (PHB), respectively, is studied. Differential scanning calorimetry shows differences in the patterns of changes in the thermophysical characteristics of the PLA—NR (with a rubber content of 5 to 15 wt %)—and PHB—synthetic EPR (10–30 wt %)—compositions. The melting point and the degree of crystallinity increase in the case of PLA and decrease in the experiment with PHB. The mechanical characteristics of the investigated compositions have similar dependences: with an increase in the content of rubbers, the relative elongation increases and the tensile strength and elastic modulus decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. F. Ravenelle and R. Marchessault, Biomacromolecules 4, 856 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. A. Steinbuechel, in Biomaterials, Ed. by D. B. Byron (Macmillan, Basingstoke, 1996), p. 221.

    Google Scholar 

  3. K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol. 101, 8493 (2010). https://doi.org/10.1016/j.biortech.2010.05.092

    Article  CAS  Google Scholar 

  4. D. Garlotta, J. Polym. Environ. 9, 63 (2011). https://doi.org/10.1023/A:1020200822435

    Article  Google Scholar 

  5. Yu. V. Tertyshnaya and M. V. Podzorova, Russ. J. Phys. Chem. B 14, 167 (2020). https://doi.org/10.1134/S1990793120010170

    Article  CAS  Google Scholar 

  6. Y. Tertyshnaya, M. Podzorova, and M. Moskovskiy, Polymers 13, 461 (2021). https://doi.org/10.3390/polym13030461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. G. Karpova, A. A. Ol’khov, P. M. Tyubaeva, N. G. Shilkina, A. A. Popov, and A. L. Iordanskii, Russ. J. Phys. Chem. B 13, 313 (2019). https://doi.org/10.1134/S1990793119020039

    Article  CAS  Google Scholar 

  8. W. Jia, R. H. Gong, and P. J. Hogg, Composites, Part B 62, 104 (2014). https://doi.org/10.1016/j.compositesb.2014.02.024

    Article  CAS  Google Scholar 

  9. R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, Polymer 55, 4728 (2014). https://doi.org/10.1016j.polymer.2014.06.032

    Article  CAS  Google Scholar 

  10. Z. Kulinski and E. Piorkowska, Polymer 46, 10290 (2005). https://doi.org/10.1016/j.polymer.2005.07.101

    Article  CAS  Google Scholar 

  11. Y. Li and H. Shimizu, Eur. Polym. J. 45, 738 (2009). https://doi.org/10.1016/j.eurpolymj.2008.12.010

    Article  CAS  Google Scholar 

  12. W. Zhang, L. Chen, and Y. Zhang, Polymer 50, 1311 (2009). https://doi.org/10.1016/j.polymer.2009.01.032

    Article  CAS  Google Scholar 

  13. Y. Li and H. Shimizu, Macromol. Biosci. 7, 921 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. V. E. Gul’ and V. N. Kuleznev, Structure and Mechanical Properties of Polymers (Vyssh. Shkola, Moscow, 1972) [in Russian].

    Google Scholar 

  15. M. Kowalczyk and E. Piorkowska, J. Appl. Polym. Sci. 124, 4579 (2012). https://doihttps://doi.org/10.1002/app.35489

  16. L.-T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci. 33, 820 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  17. El-Hadi, R. Schnabel, E. Straube, G. Muller, and S. Henning, Polym. Test. 21, 665 (2002).

    Article  CAS  Google Scholar 

  18. J. Zhang, K. Tashiro, H. Tsuji, and A. J. Domb, Macromol. Symp. 242, 274 (2006). https://doi.org/10.1002/masy.200651038

    Article  CAS  Google Scholar 

  19. V. N. Kuleznev, Polymer Blends (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  20. S. N. Zhurkov, V. A. Zakrevskii, and E. E. Tomashevskii, Sov. Phys. Solid State 6, 1508 (1964).

    Google Scholar 

  21. G. M. Bartenev, Strength and Degradation Mechanism of Polymers (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  22. A. Peterlin, Zeitschr. Phys. 111, 232 (1938).

    Article  CAS  Google Scholar 

  23. A. O. Baranov, N. A. Erina, T. I. Medintseva, S. A. Kuptsov, and E. V. Prut, Polymer Sci., Ser. A 43, 1177 (2001).

    Google Scholar 

  24. C. Xu, D. Yuan, L. Fu, and Y. Che, Polym. Test. 37, 94 (2014). https://doi.org/10.1016/j.polymertesting.2014.05.005

    Article  CAS  Google Scholar 

  25. K. Pongtanayut, C. Thongpin, and O. Santawitee, Energy Proc. 34, 888 (2013). https://doi.org/10.1016/j.egypro.2013.06.826

    Article  CAS  Google Scholar 

  26. V. N. Kuleznev and V. A. Shershnev, Chemistry and Physics of Polymers, 3rd ed. (Lan’, St. Petersburg, 2014) [in Russian].

Download references

ACKNOWLEDGMENT

This study was carried out using the instruments of the Center for Collective Use of the Institute of Biochemical Physics, Russian Academy of Sciences “New materials and technologies” and the Center for Collective Use of Plekhanov Russian University of Economics, Moscow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tertyshnaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tertyshnaya, Y.V., Khvatov, A.V. & Popov, A.A. Mechanical Properties of Composites Based on Polylactide and Poly-3-Hydroxybutyrate with Rubbers. Russ. J. Phys. Chem. B 16, 162–166 (2022). https://doi.org/10.1134/S1990793122010304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010304

Keywords:

Navigation