Skip to main content
Log in

Effect of Impurity Gases on the Combustion of a Mechanically Activated Ni + Al Mixture

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this study, we compare the combustion of nonactivated and mechanically activated Ni + Al mixtures. The combustion of compacted specimens and specimens of bulk density is studied. The combustion rate, relative elongation of samples, initial density and density of combustion products, and the microstructure and phase composition of the initial mixtures and reaction products are investigated. It is found that mechanical activation (MA) leads to a significant increase in the burning rate and elongation of the pressed samples, while the bulk density samples retain their length during combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. A. Kochetov, N. F. Shkodich, and A. S. Rogachev, Bull. Russ. Acad. Sci.: Phys. 72, 1059 (2008).

    Article  Google Scholar 

  2. A. S. Rogachev, N. A. Kochetov, V. V. Kurbatkina, et al., Combust. Explos. Shock Waves 42 (5), 421 (2006).https://doi.org/10.1007/s10573-006-0071-1

  3. V. Yu. Filimonov, M. A. Korchagin, I. A. Ditenberg, et al., Powder Technol. 335, 606 (2013). https://doi.org/10.1016/j.powtec.2012.11.022

    Article  CAS  Google Scholar 

  4. M. A. Korchagin, Combust. Explos., Shock Waves 51, 578 (2015). https://doi.org/10.1134/S0010508215050093

    Article  Google Scholar 

  5. E. Medda, F. Delogu, and G. Cao, Mater. Sci. Eng., A 361, 23 (2003). https://doi.org/10.1016/S0921-5093(03)00566-5

    Article  CAS  Google Scholar 

  6. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., Combust. Explos. Shock Waves 39 (1), 43 (2003).https://doi.org/10.1023/A:10221972187492

  7. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., Combust. Explos. Shock Waves 39 (1), 51 (2003).https://doi.org/10.1023/A:1022197218749

  8. N. A. Kochetov and B. S. Seplyarskii, Combust. Explos. Shock Waves 50 (4), 393 (2014).https://doi.org/10.1134/S0010508214040054

  9. B. S. Seplyarskii, Dokl. Phys. Chem. 396, 130 (2004).

    Article  CAS  Google Scholar 

  10. B. S. Seplyarskii, R. A. Kochetkov, and T. G. Lisina, Russ. J. Phys. Chem. B 13, 267 (2019). https://doi.org/10.1134/S1990793119020064

  11. N. F. Shkodich, A. S. Rogachev, S. G. Vadchenko, et al., Int. J. Self-Propag. High-Temp. Synth. 21, 104 (2012). https://doi.org/10.3103/S1061386212020100

    Article  CAS  Google Scholar 

  12. S. G. Vadchenko, O. D. Boyarchenko, N. F. Shkodich, et al., Int. J. Self-Propag. High-Temp. Synth. 22, 60 (2013). https://doi.org/10.3103/S1061386213010123

    Article  CAS  Google Scholar 

  13. D. Yu. Kovalev, N. A. Kochetov, V. I. Ponomarev, et al., Int. J. Self-Propag. High-Temp. Synth. 19, 120 (2010). https://doi.org/10.1134/S00105082170500702017

    Article  CAS  Google Scholar 

  14. O. V. Lapshin and V. K. Smolyakov, Combust. Explos. Shock Waves, 53 (5), 548 (2017). https://doi.org/10.1134/S00105082170500702017

  15. A. G. Merzhanov, V. V. Barzykin, and V. G. Abramov, Khim. Fiz. 15 (6), 793 (1996).

    Google Scholar 

  16. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, et al., Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).

  17. N. A. Kochetov, Int. J. Self-Propag. High-Temp. Synth. 22, 170 (2013). https://doi.org/10.3103/S1061386213030023

    Article  CAS  Google Scholar 

  18. N. A. Kochetov and B. S. Seplyarsky, Russ. J. Phys. Chem. B 14, 791 (2020). https://doi.org/10.1134/S199079312005005X

    Article  CAS  Google Scholar 

  19. N. A. Kochetov and B. S. Seplyarsky, Russ. J. Phys. Chem. B 12, 883 (2018). https://doi.org/10.1134/S1990793118050172

    Article  CAS  Google Scholar 

  20. A. S. Mukasyan, K. E. Shuck, J. M. Pauls, et al., Adv. Eng. Mater. 2018, 1701065 (2018). https://doi.org/10.1002/adem.201701065

    Article  CAS  Google Scholar 

  21. M. A. Korchagin, T. F. Grigorieva, and A. P. Barinova, Int. J. Self-Propag. High-Temp. Synth. 9, 307 (2000).

    CAS  Google Scholar 

  22. S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 25, 210 (2016). https://doi.org/10.3103/S1061386216040105

    Article  CAS  Google Scholar 

  23. S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 24, 90 (2015). https://doi.org/10.3103/S1061386215020107

  24. O. K. Kamynina, A. S. Rogachev, A. E. Sytschev, et al., Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193 (2004).

    CAS  Google Scholar 

  25. O. K. Kamynina, A. S. Rogachev, and L. M. Umarov, Combust. Explos. Shock Waves, 39 (5), 548 (2003).https://doi.org/10.1023/A:1026161818701

Download references

ACKNOWLEDGMENTS

The authors thank I.D. Kovalev for the X-ray phase study of the mixtures and their synthesis products, N.V. Sachkova for obtaining photographs of the microstructure of the samples, M.L. Busurina for measuring the particle size distribution, and R.A. Kochetkov for conducting experiments on the combustion of bulk density mixtures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kochetov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A., Seplyarsky, B.S. Effect of Impurity Gases on the Combustion of a Mechanically Activated Ni + Al Mixture. Russ. J. Phys. Chem. B 16, 66–71 (2022). https://doi.org/10.1134/S1990793122010079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010079

Keywords:

Navigation