Skip to main content
Log in

Compressed Molecules and Enzymes

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Compression of molecules is a means to control their conformations and modify their ionization potentials and electron affinity by violation of atomic orbitals and their inter- and intra-molecular potentials. Compression induced modification of the vibrational frequencies increases the difference of zero point energies of isotopic molecules, which results to increasing isotope effects. By compression of single crystals the reaction trajectories of hydrogen atom transfer were identified. Compression is a means for the key, Life supporting enzymes, ATP synthase and DNA polymerase, to function as the molecular devices, overcoming high energy repulsive barrier and urging ATP and DNA synthesis. By using nuclear magnetic ions of magnesium, calcium, and zinc, catalyzing enzymatic ATP and DNA synthesis, the new radical pair mechanism is discovered. It is induced by compression of enzymatic sites and strongly, by 3–5 times, suppresses DNA synthesis and even more strongly, by 30–50 times, increases mortality of cancer cells. In this case compression of enzymatic sites dehydrates metal ions, stimulating electron transfer and switching on radical pair mechanism, responsible for the magnetic control of gene chemistry and magneto-biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. L. Buchachenko, Compressed atoms, J. Phys. Chem. B 105, 5839 (2001).

    Article  CAS  Google Scholar 

  2. K. Komatsu, M. Murata, and Y. Murata, Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis, Science (Washington, DC, u. S.) 307, 238 (2005).

  3. E. Sartori, M. Ruzzi, N. J. Turro, J. D. Decatur, D. C. Doetschman, R. G. Lawler, A. L. Buchachenko, Y. Murata, and K. Komatsu, Nuclear relaxation of H2 and H2@C60 in organic solvents, J. Am. Chem. Soc. 128, 14752 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. G. J. Jimenez-Oses, I. Garcıa, F. Corzana, and J. Elguero, Accurate calculation of chemical shifts in highly dynamic H2@C60 through an integrated quantum mechanics/molecular dynamics scheme, Org. Lett. 13, 2528 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. H. Kruse and S. Grimme, Accurate quantum chemical description of noncovalent interactions in hydrogen filled endohedral fullerene complexes, J. Phys. Chem. C 113, 17006 (2009).

    Article  CAS  Google Scholar 

  6. T. Korona and H. Dodziuk, Small molecules in C60 and C70: which complexes could be stabilized? J. Chem. Theory Comput. 7, 1476 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. M. Khatua, U. Sarkar, and P. K. Chattaraj, Reactivity dynamics of a confined molecule in presence of an external magnetic field, Int. J. Quantum Chem. 115, 144 (2015).

    Article  CAS  Google Scholar 

  8. D. Chakraborty and P. K. Chattaraj, Bonding, reactivity and dynamics in confined systems, J. Phys. Chem. A 123, 4513 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. E. Sartori, M. Ruzzi, N. J. Turro, K. Komatsu, Y. Murata, R. G. Lawler, and A. L. Buchachenko, Paramagnet enhanced nuclear relaxation of H2 in organic solvents and in H2@C60, J. Am. Chem. Soc. 130, 2221 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Li, X. Lei, S. Jockusch, Y.-C. Chen, M. Frunzi, J. A. Johnson, R. G. Lawler, Y. Murata, M. Murata, K. Komatsu, and N. J. Turro, Magnetic switch for spin-catalyzed inter-conversion of nuclear spin isomers, J. Am. Chem. Soc. 132, 4042 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. N. J. Turro, Y.-C. Chen, E. Sartori, M. Ruzzi, A. Marti, R. G. Lawler, S. Jockusch, J. López-Gejo, K. Komatsu, and Y. Murata, The spin chemistry and magnetic resonance of H2@C60. From the Pauli principle to trapping a long lived nuclear excited spin state inside a buckyball, Acc. Chem. Res. 43, 335 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. G. A. Dolgonos and G. H. Peslherbe, Can two H2 molecules be inserted into C60– an accurate first-principles exploration of structural, energetic and vibrational properties of the 2H2@C60 complex, Chem. Phys. Lett. 663, 104 (2016).

    Article  CAS  Google Scholar 

  13. M. Murata, S. Maeda, Y. Morinaka, Y. Murata, and K. Komatsu, Synthesis and reaction of fullerene C70 encapsulating two molecules of H2, J. Am. Chem. Soc. 130, 15800 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. K. Kurotobi and Y. Murata, A single molecule of water encapsulated in fullerene C60, Science (Washington, DC, U. S.) 333, 613 (2011).

    Article  CAS  Google Scholar 

  15. A. Krachmalnicoff, M. H. Levitt, and R. J. Whitby, An optimised scalable synthesis of H2O@C60 and new synthesis of H2@C60, Chem. Commun. 50, 13037 (2014).

    Article  CAS  Google Scholar 

  16. A. Krachmalnicoff, R. Bounds, S. Mamone, S. Alom, M. Concistrè, B. Meier, K. Kouril, M. E. Light, M. R. Johnson, S. Rols, A. J. Horsewill, A. Shugai, U. Nagel, T. Rõõm, M. Carravetta, M. H. Levitt, and R. J. Whitby, The dipolar endofullerene HF@C60, Nat. Chem. 8, 953 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. P. R. Varadwaj, A. Varadwaj, and H. M. Marques, C70 fullerene cage as a novel catalyst for efficient proton transfer reactions between small molecules: A theoretical study, Sci. Rep. 9, 10650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Zhang, M. Murata, T. Aharen, A. Wakamiya, T. Shimoaka, T. Hasegawa, and Y. Murata, Synthesis of a distinct water dimer inside fullerene C70, Nat. Chem. 8, 435 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. T. Peres, B. Cao, W. Cui, A. Khong, R. J. Cross, Jr., M. Saunders, and C. Lifshitz, Some new diatomic molecule containing endohedral fullerenes, Int. J. Mass Spectrom. 210–211, 241 (2001).

    Article  Google Scholar 

  20. T. Suetsuna, N. Dragoe, H. Wolfgang, A. Weidinger, S. Ito, H. Takagi, and K. Kitazawa, Separation of N2@C60 and N@C60, Chem. Eur. J. 8, 5079 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Hashikawa, M. Murata, A. Wakamiya, and Y. Murata, Synthesis and properties of endohedral aza[60]fullerenes: H2O@C59N and H2@C59N as their dimers and monomers, J. Am. Chem. Soc. 138, 4096 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. S. Hasegawa, Y. Hashikawa, T. Kato, and Y. Murata, Construction of metal-free electron spin system by encapsulation of NO molecule inside an open-cage fullerene C60 derivative, Angew. Chem. Int. Ed. 57, 12804 (2018).

    Article  CAS  Google Scholar 

  23. Y. Li, N. Lou, D. Xu, C. Pan, X. Lu, and L. Gan, Oxygen-delivery materials: Synthesis of an open-cage fullerene derivative suitable for encapsulation, Angew. Chem. Int. Ed. 57, 14144 (2018).

    Article  CAS  Google Scholar 

  24. P. Ravinder and V. Subramanian, Studies on the encapsulation of various anions in different fullerenes using density functional theory calculations and Born-Oppenheimer molecular dynamics simulation, J. Phys. Chem. A 115, 11723 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. I. I. Aliev, A. L. Kovarskii, and A. L. Buchachenko, Radical reactions in organic crystals under pressure: experiment and theory, Russ. J. Phys. Chem. B 2, 189 (2007).

    Article  Google Scholar 

  26. A. L. Buchachenko, M. V. Motyakin, and I. I. Aliev, in Radical Solid-State Reactions at High Pressure, Reactivity of Molecular Solids, Ed. by E. Boldyreva and V. Boldyrev (Wiley, New York, 1999), Chap. 6.

    Google Scholar 

  27. A. Sarsa, J. M. Alcaraz-Pelegrina, and C. le Sech, Isotopic effects on covalent bond confined in penetrable sphere, J. Phys. Chem. B 119, 14364 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. N. N. Breslavskaya and A. L. Buchachenko, Isotope effects induced by molecular compression, J. Phys. Chem. A 124, 6352 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Single-Molecule Biomechanics with Optical Methods, Science (Washington, DC, U. S.) 283, 1689 (1999).

    Article  CAS  Google Scholar 

  30. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, Force and Velocity Measured for Single Molecules of RNA Polymerase, Science (Washington, DC, U. S.) 282, 902 (1998).

    Article  CAS  Google Scholar 

  31. L. Tskhovrebova, J. Trinick, J. Sleep, and R. Simmons, Elasticity and unfolding of single molecules of the giant muscle protein titin, Nature (London, U.K.) 387, 308 (1997).

    Article  CAS  Google Scholar 

  32. R. F. Service, Watching DNA at Work, Science (Washington, DC, U. S.) 283, 1668 (1999).

    Article  CAS  Google Scholar 

  33. D. B. Northrop, Unusual origins of isotope effects in enzyme-catalysed reactions, Phil. Trans. R. Soc. London, Ser. B, 361, 1341 (2006).

    Article  CAS  Google Scholar 

  34. H. Park, G. G. Girdaukas, and D. B. Northrop, Effect of pressure on heavy-atom isotope effect of yeast alcohol dehydrogenase, J. Am. Chem. Soc. 128, 1868 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. J. P. Klinman, An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling, Chem. Phys. Lett. 471, 179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. P. Layfield and Sh. Hammes-Schiffer, Hydrogen tunneling in enzymes and biomimetic models, Chem. Rev. 114, 3466 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. P. Li, A. V. Soudakov, and Sh. Hammes-Schiffer, Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations, J. Am. Chem. Soc. 140, 3068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sh. Hu, A. V. Soudackov, Sh. Hammes-Schiffer, and J. P. Klinman, Enhanced Rigidification within a Double Mutant of Soybean Lipoxygenase Provides Experimental Support for Vibronically Nonadiabatic Proton-Coupled Electron Transfer Models, ACS Catal. 7, 3569 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. K. E. Luxem, W. D. Leavitt, and X. Zhang, Large hydrogen isotope fractionation distinguishes nitrogenase-derived methane from other methane sources, Appl. Environ. Microbiol. 86, e00849-20 (2020). https://doi.org/10.1128/AEM.00849-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Cavalli and M. de Vivo, M. Recanatini, Density functional study of the enzymatic reaction catalyzed by cyclin-dependent kinase, Chem. Comm., 1308 (2003).

  41. J. Akola and R. O. Jones, ATP hydrolysis in water—a density functional study, J. Phys. Chem. B 107, 11774 (2003).

    Article  CAS  Google Scholar 

  42. A. L. Buchachenko, D. A. Kuznetsov, S. E. Arkhangelsky, and M. A. Orlova, Spin Biochemistry: Magnetic 24Mg-25Mg-26Mg isotope effects on enzymatic phosphorylation, Cell 43, 243 (2005).

    CAS  Google Scholar 

  43. N. N. Lukzen, A. L. Buchachenko, and J. B. Pedersen, On the magnetic field and isotope effects in enzymatic phosphorylation, Chem. Phys. Lett. 434, 139 (2006).

    Google Scholar 

  44. A. L. Buchachenko, D. A. Kuznetsov, and N. N. Breslavskaya, Chemistry of enzymatic ATP synthesis: an insight through the isotope window, Chem. Rev. 112, 2042 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. A. L. Buchachenko, A. P. Orlov, D. A. Kuznetsov, and N. N. Breslavskaya, Magnetic isotope and magnetic field effects on the DNA synthesis, Nucl. Acids Res. 41, 8300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. A. L. Buchachenko, A. P. Orlov, D. A. Kuznetsov, and N. N. Breslavskaya, Magnetic control of the DNA synthesis, Chem. Phys. Lett. 586, 138 (2013).

    Article  CAS  Google Scholar 

  47. A. L. Buchachenko and R. G. Lawler, New possibilities for magnetic control of chemical and biochemical reactions, Acc. Chem. Res. 50, 877 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. A. L. Buchachenko, A. Bukhvostov, K. Ermakov, and D. A. Kuznetsov, Nuclear spin selectivity in enzymatic catalysis, Arch. Biochem. Biophys. 667, 30 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. S. D. Lahiri, P.-F. Wang, P. C. Babbitt, M. J. McLeish, G. L. Kenyon, and K. N. Allen, A structure of Torpedo californica creatine kinase, Biochemistry 41, 13861 (2001).

    Article  CAS  Google Scholar 

  50. M. Wyss, P. James, T. Schlegel, and T. Wallimann, Limited proteolysis of creatine kinase, Biochemistry 32, 10727 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. A. L. Buchachenko, D. A. Kuznetsov, and N. N. Bres-lavskaya, Radical mechanism of enzymatic ATP synthesis: DFT calculations and experimental control, J. Phys. Chem. B 32, 2287 (2010).

    Article  CAS  Google Scholar 

  52. A. L. Buchachenko and D. A. Kouznetsov, Magnetic control of enzymatic phosphorylation, J. Phys. Chem. Biophys. 4, 142 (2014).

    Google Scholar 

  53. D. A. Kuznetsov and A. L. Buchachenko, Nuclear magnetic ions of magnesium, calcium, and zinc as a powerful and universal means for killing cancer cells, Russ. J. Phys. Chem. B 12, 690 (2018).

    Article  CAS  Google Scholar 

  54. A. L. Buchachenko, A. A. Bukhvostov, K. V. Ermakov, and D. A. Kuznetsov, A specific role of magnetic isotopes in biological and ecological systems, Prog. Biophys. Mol. Biol. 155, 1 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Professor Ronald Lawler for his inspiring comments; financial support of the Russian Scientific Foundation (Grant no. 20-13-00148) is also kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Buchachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchachenko, A.L. Compressed Molecules and Enzymes. Russ. J. Phys. Chem. B 16, 9–17 (2022). https://doi.org/10.1134/S1990793122010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010031

Keywords:

Navigation