Skip to main content
Log in

Microbial Component Detection in Enceladus Snowing Phenomenon

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Enceladus is an attractive place to look for signs of life thanks to liquid water and the availability of energy. Recent research has proven that the ejected material of Enceladus south pole consists of water vapor, water ice, carbon dioxide, methane and molecular hydrogen. Possible similarities of physical and chemical conditions between Enceladus ocean bottom and the carbonate mineral matrix of actively venting chimneys of the Lost City Hydrothermal Field give an opportunity to create a mathematical model of microbial ascent process through the ice shell. In this study we present first results of particle in-cell kinetic simulations of microbial distance through 10 km deep ocean. We have obtained results for microbial component—Methanosarcinales sp. analogue—characterized by 6.6 pg mass and 2.0 μm diameter distribution in Enceladus plumes. We have assumed 0.1 W m−2 heating process, 5 km ice shell and cells concentration near ocean bottom 105 cells/mL. We have confirmed assumption of Porco research team about cells concentration near ocean surface about 104 cells/mL and vertical density diversity in plumes. We have found that the optimal altitude for microbial component detection is less than 1.0 km and that in-situ measurements done previously by Cassini mass spectrometer and proposed for Enceladus Orbiter mission 50 km altitude would be ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. Balch, G. Fox, L. Magrum, et al., Microbiological. Rev. 61 (1), 81 (1979).

    Google Scholar 

  2. M. Bedrossian, C. Lindensmith, and J. Nadeau, Astrobiology 17 (9), 913 (2017).

    Article  ADS  Google Scholar 

  3. W. J. Brazelton, K. A. Ludwig, M. L. Sogin, et al., Proc. Nat. Academy Sci. 107 (4), 1612 (2010).

    Article  ADS  Google Scholar 

  4. W. J. Brazelton, M. O. Schrenk, D. S. Kelley, and J. A. Baross, Appl. Environmental Microbiology 72 (9), 6257 (2006).

    Article  Google Scholar 

  5. G. W. Brindley, J. Mineralogical Soc. Japan 5 (4), 217 (1961).

  6. M. L. Cable, L. J. Spilker, F. Postberg, etal., LPI Contr., No. 2042, id. 4124 (2017a).

  7. M. L. Cable, J. I. Lunine, L. J. Spilker,et al., LPI Contr., No. 1964, id. 2577 (2017b).

  8. A. Davila, C. McKay, D. Willson, et al., in Conditions in the Subsurface Ocean of Enceladus. White paper submitted to the Committee on an Astrobiology Science Strategy for the Search for Life in the Universe (2018).

  9. Y. Dong, T. Hill, and S. Ye, JGR Space Physics 120 (2), 915 (2014).

    ADS  Google Scholar 

  10. M. M. Hedman, D. Dhingra, P. D. Nicholson, et al., Icarus 305, 123 (2018).

    Article  ADS  Google Scholar 

  11. M. M. Hedman, P. D. Nicholson, M. R. Showalter, et al., Astrophys. J. 693 (2), 1749 (2009).

    Article  ADS  Google Scholar 

  12. C. Hildenbrand, T. Stock, C. Lange, et al., J. Bacteriology 193 (3), 734 (2011).

    Article  Google Scholar 

  13. T. M. Hoehler, Metal Ions in Biological Systems 43, 9 (2005).

    Article  Google Scholar 

  14. H. W. Hsu, F. Postberg, Y. Sekine, et al., Nature 519 (7542), 207 (2015).

    Article  ADS  Google Scholar 

  15. L. Iess, D. Stevenson, M. Parisi, et al., Science 344 (6179), 78 (2014).

    Article  ADS  Google Scholar 

  16. B. Jakosky and E. Shock, J. Geophys. Research 103 (S8), 19359 (1998).

    Article  ADS  Google Scholar 

  17. A. Kahana, P. Schmitt-Kopplin, and D. Lancet, Astrobiology 19 (10), 1263 (2019).

    Article  ADS  Google Scholar 

  18. S. Kempf, U. Beckmann, and J. Schmidt, Icarus 206 (2), 446 (2010).

    Article  ADS  Google Scholar 

  19. K. A. Kubiak, J. Kotlarz, and A. M. Mazur, Polish J. Environmental Studies 25 (1) (2016).

  20. M. A. Kubiak, Gwiazdy i materia międzygwiazdowa (Naukowe PWN, Warszwa, 1994) [in Polish].

  21. J. Lunine, H. Waite, F. Postberg, et al., in Europ.Geosciences Union General Assembly Conf. Abstracts (Vienna, 2015).

    Google Scholar 

  22. C. McKay, C. Porco, T. Altheide, et al., Astrobiology 8 (5), 909 (2008).

    Article  ADS  Google Scholar 

  23. C. Porco, L. Dones, and C. Mitchell, Astrobiology 17 (9), 876 (2017).

    Article  ADS  Google Scholar 

  24. C. Porco, P. Helfenstein, P. Thomas, et al., Science, 311, 1393 (2006).

    Article  ADS  Google Scholar 

  25. G. Proskurowski, M. Lilley, D. S. Kelley, and E. Olson, Chem. Geol. 229, 331 (2006).

    Article  ADS  Google Scholar 

  26. J. Saur, N. Schilling, F. M. Neubauer, et al., Geophys. Research. Lett. 35 (20), L20105 (2008).

    Article  ADS  Google Scholar 

  27. O. Shrenk, in Life in Extreme Environments, Vol. 5: Life at Vents and Seeps, Ed. by J. Kallmeyer (De Gruyter, Berlin, 2017), pp. 107–138.

  28. N. Sleep, A. Meibom, T. Fridriksson, et al., Proc. Nat. Acad. Sci. 101 (35), 12818 (2004).

    Article  ADS  Google Scholar 

  29. J. Spencer, Planetary Science Decadal Survey. Enceladus Orbiter Mission Concept Study (United States National Research Council, Washington, 2010).

    Google Scholar 

  30. E. Steel, A. Davila, and C. McKay, Astrobiology 17 (9), 862 (2017).

    Article  ADS  Google Scholar 

  31. B. Teolis and M. Perry, Astrobiology 17 (9), 926 (2017).

    Article  ADS  Google Scholar 

  32. P. C. Thomas, R. Tajeddine, M. S. Tiscareno, et al.,Icarus 264, 37 (2016).

    Article  ADS  Google Scholar 

  33. J. H. Waite, C. R. Glein, R. S. Perryman, et al., Science 356 (6334), 155 (2007).

    Article  ADS  Google Scholar 

  34. S. A. Wright, B. Sherwood Lollar, S. Atreya, et al., Amer. Astron. Soc. Meet., No. 233, id. 432.03 (2019).

  35. N. Zalewska, J. Kotlarz, M. Kacprzak, and T. Korniluk, Pomiary Automatyka Robotyka 21 (2017) [in Polish].

Download references

ACKNOWLEDGMENTS

This research was supported by the Institute of Aviation. We thank our colleagues from Remote Sensing Division who provided insight and expertise that greatly assisted the research. We thank Prof. Romana Ratkiewicz and Wojciech Konior for assistance with particle-in-cell simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kotlarz.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotlarz, J., Zielenkiewicz, U., Zalewska, N.E. et al. Microbial Component Detection in Enceladus Snowing Phenomenon. Astrophys. Bull. 75, 166–175 (2020). https://doi.org/10.1134/S199034132002008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034132002008X

Keywords:

Navigation