Skip to main content
Log in

Evolution of galaxy groups

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We study the variations of the properties of groups of galaxies with dynamical masses of 1013 M <M 200<1014 M , represented by two samples: one has redshifts of z < 0.027 and is located in the vicinity of the Coma cluster, the other has z > 0.027, and is located in the regions of the following superclusters of galaxies: Hercules, Leo, Bootes, Ursa Major, and Corona Borealis. Using the archived data of the SDSS and 2MASX catalogs, we determined the concentration of galaxies in the systems by measuring it as the inner density of the group within the distance of the fifth closest galaxy from the center brighter than M K = −23. m 3. We also measured the magnitude gap between the first and the fourth brightest galaxies ΔM 14 located within one half of the selected radius R 200, the fraction of early-type galaxies, and the ratio of bright dwarf galaxies (Mr = [−18. m 5,−16. m 5]) to giant galaxies (M r < −18. m 5) (DGR) within the radius R 200. The main aim of the investigation is to find among these characteristics the ones that reflect the evolution of groups of galaxies.We determined that the ratio of bright dwarf galaxies to early-type giant galaxies on the red sequence depends only on the x-ray luminosity: the DGR increases with luminosity. The fraction of early-type galaxies in the considered systems is equal, on average, to 0.65 ± 0.01, and varies significantly for galaxies with σ200 < 300 kms−1. Based on the luminosity of the brightest galaxy, the magnitude gap between the first and the fourth brightest galaxies in the groups, and on model computations of these parameters, we selected four fossil group candidates: AWM4, NGC0533, NGC0741, and NGC6098 (where the brightest galaxy is a double).We observe no increase in the number of faint galaxies (the α parameter of the Schechter function is less than 1) in our composite luminosity function (LF) for galaxy systems with z < 0.027 in the M K = [−26m,−21. m 5] range, whereas earlier we obtained α > 1 for the LF of the Hercules and Leo superclusters of galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. P. Huchra and M. J. Geller, Astrophys. J. 257, 423 (1982).

    Article  ADS  Google Scholar 

  2. R. Nolthenius and S. D. M. White, Monthly Notices Royal Astron. Soc. 225, 505 (1987).

    Article  ADS  Google Scholar 

  3. M. Ramella, M. J. Geller, and J. P. Huchra, Astrophys. J. 344, 57 (1989).

    Article  ADS  Google Scholar 

  4. A. Dariush, H. G. Khosroshahi, T. J. Ponman, et al., Monthly Notices Royal Astron. Soc. 382, 433 (2007).

    Article  ADS  Google Scholar 

  5. A. A. Dariush, S. Raychaudhury, T. J. Ponman, et al., Monthly Notices Royal Astron. Soc. 405, 1873 (2010).

    ADS  Google Scholar 

  6. L. R. Jones, T. J. Ponman, A. Horton, et al., Monthly Notices Royal Astron. Soc. 343, 627 (2003).

    Article  ADS  Google Scholar 

  7. M. Raouf, H. G. Khosroshahi, T. J. Ponman, et al., Monthly Notices Royal Astron. Soc. 442, 1578 (2014).

    Article  ADS  Google Scholar 

  8. A. J. Deason, C. Conroy, A. R. Wetzel, and J. L. Tinker, Astrophys. J. 777, 154 (2013).

    Article  ADS  Google Scholar 

  9. T. Zapata, J. Perez, N. Padilla, and P. Tissera, Monthly Notices Royal Astron. Soc. 394, 2229 (2009).

    Article  ADS  Google Scholar 

  10. A. L. B. Ribeiro, M. Trevisan, P. A. A. Lopes, and A. C. Schilling, Astron. and Astrophys. 505, 521 (2009).

    Article  ADS  Google Scholar 

  11. S. Zarattini, M. Girardi, J. A. L. Aguerri, et al., Astron. and Astrophys. 586, A63 (2016).

    Article  Google Scholar 

  12. S. Zarattini, J. A. L. Aguerri, R. Sánchez-Janssen, et al., Astron. and Astrophys. 581, A16 (2015).

    Article  Google Scholar 

  13. M. Ramella, W. Boschin, M. J. Geller, et al., Astron. J. 128, 2022 (2004).

    Article  ADS  Google Scholar 

  14. B. M. Poggianti, V. Desai, R. Finn, et al., Astrophys. J. 684, pp. 888–904 (2008).

    Article  ADS  Google Scholar 

  15. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 71, 257 (2016).

    Article  ADS  Google Scholar 

  16. M. L. Balogh and S. L. McGee, Monthly Notices Royal Astron. Soc. 402, L59 (2010).

    Article  ADS  Google Scholar 

  17. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182, pp. 543–558 (2009).

    Article  ADS  Google Scholar 

  18. T. H. Jarrett, T. Chester, R. Cutri, et al., Astron. J. 119, 2498 (2000).

    Article  ADS  Google Scholar 

  19. M. A. Strauss, D. H. Weinberg, R. H. Lupton, et al., Astron. J. 124, 1810 (2002).

    Article  ADS  Google Scholar 

  20. N. Visvanathan and A. Sandage, Astrophys. J. 216, 214 (1977).

    Article  ADS  Google Scholar 

  21. F. G. Kopylova, Astrophysical Bulletin 68, 253 (2013).

    Article  ADS  Google Scholar 

  22. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 64, 1 (2009).

    Article  ADS  Google Scholar 

  23. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 70, 123 (2015).

    Article  ADS  Google Scholar 

  24. F. G. Kopylova and A. I. Kopylov, Astronomy Letters 37, 219 (2011).

    Article  ADS  Google Scholar 

  25. F. G. Kopylova and A. I. Kopylov, Astronomy Letters 39, 1 (2013).

    Article  ADS  Google Scholar 

  26. G. O. Abell, Astrophys. J. Suppl. 3, 211 (1958).

    Article  ADS  Google Scholar 

  27. A. P. Hearin, A. R. Zentner, J. A. Newman, and A. A. Berlind, Monthly Notices Royal Astron. Soc. 430, 1238 (2013).

    Article  ADS  Google Scholar 

  28. P. Schechter, Astrophys. J. 203, 297 (1976).

    Article  ADS  Google Scholar 

  29. M. Colless, Monthly Notices Royal Astron. Soc. 237, 799 (1989).

    Article  ADS  Google Scholar 

  30. J. E. Barnes, Nature 338, 123 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Kopylova.

Additional information

Original Russian Text © F.G. Kopylova, A.I. Kopylov, 2017, published in Astrofizicheskii Byulleten’, 2017, Vol. 72, No. 2, pp. 111–121.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylova, F.G., Kopylov, A.I. Evolution of galaxy groups. Astrophys. Bull. 72, 100–110 (2017). https://doi.org/10.1134/S199034131702002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034131702002X

Key words

Navigation