Skip to main content
Log in

Non-fullerene acceptors for organic solar cells

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

Solar cells based on organic semiconductor molecules are a promising alternative to conventional silicon photocells owing to their low cost, simple production, and good mechanical properties. Effective organic photocells are based on a heterojunction using an active layer consisting of two different organic semiconductors, one of which is an electron donor, while the other is an acceptor. Progress in organic photovoltaics is related to the development of new donor materials, while fullerene derivatives are commonly used as acceptors. The advantages and disadvantages of fullerene compounds for organic solar cells are discussed in this review, the principles of their operation are briefly considered, and the most successful new non-fullerene acceptors are described. The application of latter acceptors has made it possible to fabricate organic solar cells with an efficiency of about 2–4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Ameri, N. Li, and C. J. Brabec, Energy Environ. Sci. 6, 2390 (2013).

    Article  CAS  Google Scholar 

  2. M. A. Green, K. Emery, Y. Hishikawa,W. Warta, and E. D. Dunlop, Prog. Photovoltaics 21, 827 (2013).

    Article  Google Scholar 

  3. D. Yu. Parashchuk and A. I. Kokorin, Ross. Khim. Zh. 52(6), 107 (2008).

    CAS  Google Scholar 

  4. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    Article  CAS  Google Scholar 

  5. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).

    Article  CAS  Google Scholar 

  6. Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, Chem. Rev. 109, 5868 (2009).

    Article  CAS  Google Scholar 

  7. Y. Liang and L. Yu, Acc. Chem. Res. 43, 1227 (2010).

    Article  CAS  Google Scholar 

  8. V. D. Mihailetchi, H. X. Xie, B. De Boer, L. J. A. Koster, and P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006).

    Article  CAS  Google Scholar 

  9. J. S. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 87, 112105 (2005).

    Article  Google Scholar 

  10. J. H. Choi, K.-I. Son, T. Kim, K. Kim, K. Ohkubo, and S. Fukuzumi, J. Mater. Chem. 20, 475 (2010).

    Article  CAS  Google Scholar 

  11. Y. Zhang, H.-L. Yip, O. Acton, S. K. Hau, F. Huang, and A. K. Y. Jen, Chem. Mater. 21, 2598 (2009).

    Article  CAS  Google Scholar 

  12. F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon, and J. C. Hummelen, Org. Lett. 9, 551 (2007).

    Article  CAS  Google Scholar 

  13. P. A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Y. Mayorova, A. E. Goryochev, A. S. Peregudov, R. N. Lyubovskaya, G. Gobsch, N. S. Sariciftci, and V. F. Razumov, Adv. Funct. Mater. 19, 779 (2009).

    Article  CAS  Google Scholar 

  14. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 22, 3839 (2010).

    Article  CAS  Google Scholar 

  15. M. I. Valitov, I. P. Romanova, G. R. Shaikhutdinova, D. G. Yakhvarov, V. V. Bruevich, V. A. Dyakov, O. G. Sinyashin, and D. Y. Paraschuk, Solar Energy Mater. Solar Cells 103, (2012).

  16. M. A. Faist, P. E. Keivanidis, S. Foster, P. H. Wobkenberg, T. D. Anthopoulos, D. D. C. Bradley, J. R. Durrant, and J. Nelson, J. Polym. Sci., Part B: Polym. Phys. 49, 45 (2011).

    Article  CAS  Google Scholar 

  17. M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 20, 2116 (2008).

    Article  CAS  Google Scholar 

  18. M. A. Faist, S. Shoaee, S. Tuladhar, G. F. A. Dibb, S. Foster, W. Gong, T. Kirchartz, D. D. C. Bradley, J. R. Durrant, and J. Nelson, Adv. Energy Mater. 3, 744 (2013).

    Article  CAS  Google Scholar 

  19. Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, and E. Nakamura, J. Am. Chem. Soc. 131, 16048 (2009).

    Article  CAS  Google Scholar 

  20. G. Zhao, Y. He, and Y. Li, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 22, 4355 (2010).

    Article  CAS  Google Scholar 

  21. Y. He, H.-Y. Chen, J. Hou, and Y. Li, J. Am. Chem. Soc., 132, 1377 (2010).

    Article  CAS  Google Scholar 

  22. R. B. Ross, C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, M. O. Reese, N. Kopidakis, J. Peet, B. Walker, G. C. Bazan, E. Van Keuren, B. C. Holloway, and M. Drees, Nature Mater. 8, 208 (2009).

    Article  CAS  Google Scholar 

  23. R. B. Ross, C. M. Cardona, F. B. Swain, D. M. Guldi, S. G. Sankaranarayanan, E. Van Keuren, B. C. Holloway, and M. Drees, Adv. Funct. Mater. 19, 2332 (2009).

    Article  CAS  Google Scholar 

  24. P. J. Fagan, J. C. Calabrese, and B. Malone, Science (Washington, D. C.) 252, 1160 (1991).

    Article  CAS  Google Scholar 

  25. F. J. Brady, D. J. Cardin, and M. Domin, Org. Chem. 491, 169 (1995).

    Article  CAS  Google Scholar 

  26. S. M. Peregudova, L. I. Denisovich, E. V. Martynova, M. V. Tsikalova, and Y. N. Novikov, Russ. J. Electrochem. 44, no. 2, p. 249 (2008).

    Article  CAS  Google Scholar 

  27. S. A. Zapunidi, D. S. Martyanov, E. M. Nechvolodova, M. V. Tsikalova, Y. N. Novikov, and D. Y. Paraschuk, Pure Appl. Chem. 80, 2151 (2008).

    Google Scholar 

  28. M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. L. Brabec, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 18, 789 (2006).

    Article  CAS  Google Scholar 

  29. D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, Nanotechnology 15, 1317 (2004).

    Article  CAS  Google Scholar 

  30. A. Anctil, C. W. Babbitt, R. P. Raffaelle, and B. J. Landi, Environ. Sci. Technol. 45, 2353 (2011).

    Article  CAS  Google Scholar 

  31. A. Anctil, C. Babbitt, B. Landi, and R. P. Raffaelle, in 35 IEEE Photovoltaic Specialists Conference (Honolulu, 2010).

    Google Scholar 

  32. P. Sonar, J. P. F. Lim, and K. L. Chan, Energy Environ. Sci. 4, 1558 (2011).

    Article  CAS  Google Scholar 

  33. A. Facchetti, Mater. Today 16, 123 (2013).

    Article  CAS  Google Scholar 

  34. D. E. Markov, E. Amsterdam, P. W. M. Blom, A. B. Sieval, and J. C. Hummelen, J. Phys. Chem. A 109, 5266 (2005).

    Article  CAS  Google Scholar 

  35. J. A. Barker, C. M. Ramsdale, and N. C. Greenham, Phys. Rev. 67, 075205 (2003).

    Article  Google Scholar 

  36. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, Phys. Rev. B 72, 085205 (2005).

    Article  Google Scholar 

  37. C. Li and H. Wonneberger, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 24, 613 (2012).

    Article  CAS  Google Scholar 

  38. High Performance Pigments, Ed. by H. M. Smith (Wiley-VCH, 2003).

    Google Scholar 

  39. G. D. Sharma, P. Balraju, J. A. Mikroyannidis, and M. M. Stylianakis, Solar Energy Mater. Solar Cells 93, 2025 (2009).

    Article  CAS  Google Scholar 

  40. G. D. Sharma, P. Suresh, J. A. Mikroyannidis, and M. M. Stylianakis, J. Mater. Chem. 20, 561 (2010).

    Article  CAS  Google Scholar 

  41. J. A. Mikroyannidis, P. Suresh, and G. D. Sharma, Synth. Met. 160, 932 (2010).

    Article  CAS  Google Scholar 

  42. A. Sharenko, C. M. Proctor, T. S. Van der Poll, Z. B. Henson, T. Q. Nguyen, and G. C. Bazan, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 25, 4403 (2013).

    Article  CAS  Google Scholar 

  43. T. S. Van der Poll, J. A. Love, N. Thuc-Quyen, and G. C. Bazan, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 24, 3646 (2012).

    Article  Google Scholar 

  44. V. D. Mihailetchi, J. K. J. Van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Adv. Funct. Mater. 13, 43 (2003).

    Article  CAS  Google Scholar 

  45. R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. Silva, J. L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, J. Phys. Chem. B 108, 19281 (2004).

    Article  CAS  Google Scholar 

  46. I. A. Howard, F. Laquai, P. E. Keivanidis, R. H. Friend, and N. C. Greenham, J. Phys. Chem. 113, 21225 (2009).

    Article  CAS  Google Scholar 

  47. J. J. Dittmer, E. A. Marseglia, and R. H. Friend, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 12, 1270 (2000).

    Article  CAS  Google Scholar 

  48. S. Rajaram, R. Shivanna, S. K. Kandappa, and K. S. Narayan, J. Phys. Chem. Lett. 3, 2405 (2012).

    Article  CAS  Google Scholar 

  49. J. H. Hou, Z. A. Tan, Y. Yan, Y. J. He, C. H. Yang, and Y. F. Li, J. Am. Chem. Soc. 128, 4911 (2006).

    Article  CAS  Google Scholar 

  50. Y. Lin, Y. Li, and X. Zhan, Adv. Energy Mater. 3, 724 (2013).

    Article  CAS  Google Scholar 

  51. Y. Lin, P. Cheng, Y. Li, and X. Zhan, Chem. Commun. 48, 4773 (2012).

    Article  CAS  Google Scholar 

  52. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nature Mater. 6, 497 (2007).

    Article  CAS  Google Scholar 

  53. G. Ren, E. Ahmed, and S. A. Jenekhe, Adv. Energy Mater. 1, 946 (2011).

    Article  CAS  Google Scholar 

  54. J. T. Bloking, X. Han, A. T. Higgs, J. P. Kastrop, L. Pandey, J. E. Norton, C. Risko, C. E. Chen, J.-L. Bredas, M. D. McGehee, and A. Sellinger, Chem. Mater. 23, 5484 (2011).

    Article  CAS  Google Scholar 

  55. Y. Zhou, L. Ding, K. Shi, Y.-Z. Dai, N. Ai, J. Wang, and J. Pei, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 24, 957 (2012).

    Article  CAS  Google Scholar 

  56. Y. Zhou, Y.-Z. Dai, Y.-Q. Zheng, X.-Y. Wang, J.-Y. Wang, and J. Pei, Chem. Commun. 49, 5802 (2013).

    Article  CAS  Google Scholar 

  57. K. Cnops, B. P. Rand, D. Cheyns, B. Vereet, M. A. Empl, and P. Heremans, Nat. Commun. 5, 3406 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Trukhanov.

Additional information

Original Russian Text © V.A. Trukhanov, D.Yu. Paraschuk, 2014, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2014, Vol. 56, No. 1, pp. 76–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trukhanov, V.A., Paraschuk, D.Y. Non-fullerene acceptors for organic solar cells. Polym. Sci. Ser. C 56, 72–83 (2014). https://doi.org/10.1134/S181123821401010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181123821401010X

Keywords

Navigation