Skip to main content
Log in

Light-emitting transistor structures based on semiconducting polymers and inorganic nanoparticles

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

One of the new directions in organic electronics is the development of light-emitting organic field-effect transistors, which combine the light-emitting properties of organic light-emitting diodes and the switching properties of organic field-effect transistors. Optical and electronic properties of novel nanocomposite materials based on semiconducting polymers and inorganic nanoparticles and designed for applications in organic electronics devices were investigated. Light-emitting organic field-effect transistors with composite active layers based on the soluble semiconducting polymers PFO and MEH-PPV and ZnO nanoparticles and having asymmetric electrodes (Al and Au) that inject electrons into ZnO and holes into PFO and MEH-PPV were prepared and investigated. The data are interpreted in the context of the possibility of organic field-effect transistors based on PFO: ZnO and MEH-PPV: ZnO composite films to work in both the unipolar regime and the ambipolar regime. It is shown that the mobility of charge carriers in light-emitting organic field-effect transistors based on PFO: ZnO at 300 K reaches ∼0.02 for electrons and ∼0.03 cm2/(V s) for holes, increasing with an increase in the concentration of nanoparticles up to ∼2 cm2/(V s), a value that is comparable to the maximum mobility values for conducting polymers. Light-emitting organic field-effect transistors based on PFO: ZnO and MEH-PPV: ZnO emit light in the green and orange ranges of the optical spectrum, respectively, their electroluminescence intensities rising with an increase in either the negative bias or the positive bias at the source-drain and the gate as well as with an increase in the concentration of ZnO nanoparticles. The results indicate that light-emitting organic field-effect transistors based on soluble conjugated polymers and semiconducting ZnO nanoparticles are examples of multifunctional devices whose production technology is compatible with the modern ink-jet printing technology of organic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Conducting Polymers, Ed. by T. A. Skotheim and J. R. Reynolds (CRC, New York, 2007).

    Google Scholar 

  2. M. Sessolo and H. J. Bolink, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 23, 1829 (2011).

    Article  CAS  Google Scholar 

  3. C. Sanchez, B. Julian, P. Bellevillt, and M. Popall, J. Mater. Chem. 15, 3559 (2005).

    Article  CAS  Google Scholar 

  4. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 16, (2004).

  5. H. Sirringhaus, N. Tesler, and R. H. Friend, Science (Washington, D. C.) 280, 1741 (1998).

    Article  CAS  Google Scholar 

  6. A. N. Aleshin, I. P. Shcherbakov, E. L. Alexandrova, and E. A. Lebedev, Solid State Commun. 146, 161 (2008).

    Article  CAS  Google Scholar 

  7. A. N. Aleshin, E. L. Aleksandrova, and I. P. Shcherbakov, in Fizika tverdogo tela (St. Petersburg, 2008), Vol. 50, p. 931 [in Russian].

    Google Scholar 

  8. A. N. Aleshin, E. L. Alexandrova, and I. P. Shcherbakov, J. Phys. D: Appl. Phys. 42, 105108 (2009).

    Article  Google Scholar 

  9. A. N. Aleshin, E. L. Alexandrova, and I. P. Shcherbakov, Eur. Phys. J.: Appl. Phys. 51, 33202 (2010).

    Google Scholar 

  10. A. N. Aleshin, A. D. Sokolovskaya, I. P. Shcherbakov, P. N. Brunkov, and V. P. Ulin, in Fizika tverdogo tela (St. Petersburg, 2013), Vol. 55, p. 617 [in Russian].

    Google Scholar 

  11. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).

    Article  Google Scholar 

  12. M. C. Gwinner, S. Khodabakhsh, H. Giessen, and H. Sirringhaus, Chem. Mater. 21, 4425 (2009).

    Article  CAS  Google Scholar 

  13. J. Zaumseil, R. H. Friend, and H. Sirringhaus, Nat. Mater. 5, 69 (2006).

    Article  CAS  Google Scholar 

  14. T. Oyamada, H. Sasabe, C. Adachi, S. Okuyama, N. Shimoji, and K. Matsushige, Appl. Phys. Lett. 86, 093505 (2005).

    Article  Google Scholar 

  15. S. Z. Bisri, T. Takenobu, Y. Yomogida, H. Shimotani, T. Yamao, S. Hotta, and Y. Iwasa, Adv. Funct. Mater. 19, 1728 (2009).

    Article  CAS  Google Scholar 

  16. T. Yamao, K. Terasaki, Y. Shimizu, and S. Hotta, J. Nanosci. Nanotechnol. 10, 1017 (2010).

    Article  CAS  Google Scholar 

  17. F. Cicoira, C. Santato, M. Melucci, L. Favaretto, M. Gazzano, M. Muccini, and G. Barbarella, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 18, 169 (2006).

    Article  CAS  Google Scholar 

  18. J. Reynaert, D. Cheyns, D. Janssen, R. Muller, V. I. Arkhipov, J. Genoe, G. Borghs, and P. Heremans, J. Appl. Phys. 97, 114501 (2005).

    Article  Google Scholar 

  19. J. S. Swensen, C. Soci, and A. J. Heeger, Appl. Phys. Lett. 87, 253511 (2005).

    Article  Google Scholar 

  20. J. Zaumseil, C. L. Donley, J.-S. Kim, R. H. Friend, and H. Sirringhaus, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 18, 2708 (2006).

    Article  CAS  Google Scholar 

  21. M. A. Loi, K. Rost-Bietsch, M. Murgia, S. Karg, M. Muccini Riess, Adv. Funct. Mater. 16, 41 (2006).

    CAS  Google Scholar 

  22. F. Dinelli, R. Capelli, M. A. Loi, M. Murgia, M. Muccini, A. Facchetti, and T. J. Marks, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 18, 1416 (2006).

    Article  CAS  Google Scholar 

  23. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, Nature Mater. 9, 496 (2010).

    Article  CAS  Google Scholar 

  24. K. Yamane, H. Yanagi, A. Sawamoto, and S. Hotta, Appl. Phys. Lett. 90, 162108 (2007).

    Article  Google Scholar 

  25. T. Yamao, Y. Shimizu, K. Terasaki, and S. Hotta, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 20, 4109 (2008).

    Article  CAS  Google Scholar 

  26. K. Kajiwara, K. Terasaki, T. Yamao, and S. Hotta, Adv. Funct. Mater. 21, 2854 (2011).

    Article  CAS  Google Scholar 

  27. K. Yamada, T. Yamao, and S. Hotta, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 25, 2860 (2013).

    Article  CAS  Google Scholar 

  28. A. N. Aleshin and I. P. Shcherbakov, J. Phys. D: Appl. Phys. 43, 315104 (2010).

    Article  Google Scholar 

  29. A. N. Aleshin, I. P. Shcherbakov, V. N. Petrov, and A. N. Titkov, Org. Electron. 12, 1285 (2011).

    Article  CAS  Google Scholar 

  30. A. N. Aleshin, I. P. Shcherbakov, F. S. Fedichkin, and P. E. Gusakov, Fizika tverdogo tela (St. Petersburg, 2012), Vol. 54, p. 2196 [in Russian].

    Google Scholar 

  31. R. Wang, L. L. H. King, and A. W. Sleight, Mater. Res. 11, 1659 (1996).

    Article  CAS  Google Scholar 

  32. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 14, 99 (2002).

    Article  CAS  Google Scholar 

  33. G. N. Panin, T. W. Kang, A. N. Aleshin, A. N. Baranov, Y.-J. Oh, and I. A. Khotina, Appl. Phys. Lett. 86, 113114 (2005).

    Article  Google Scholar 

  34. S. Verlaak, D. Cheyns, M. Debucquoy, V. Arkhipov, and P. Heremans, Appl. Phys. Lett. 85, 2405 (2004).

    Article  CAS  Google Scholar 

  35. B. N. Pal, P. Trottman, J. Sun, and H. E. Katz, Adv. Funct. Mater. 18, 1832 (2008).

    Article  CAS  Google Scholar 

  36. E. J. Felmeier, M. Schidleja, C. Melzer, and H. von Seggern, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 22, 3568 (2010).

    Article  Google Scholar 

  37. M. Schidlej, C. Melzer, M. Roth, T. Schwalm, C. Gawrisch, M. Rehahn, and H. von Seggern, Appl. Phys. Lett. 95, 113303 (2009).

    Article  Google Scholar 

  38. J. Cornil, J.-L. Bredas, J. Zaumseil, and H. Sirringhaus, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 19, 1791 (2007).

    Article  CAS  Google Scholar 

  39. F. Sicora and C. Santato, Adv. Funct. Mater. 17, 3421 (2007).

    Article  Google Scholar 

  40. A. N. Aleshin, F. S. Fedichkin, and P. E. Gusakov, in Fizika tverdogo tela (St. Petersburg, 2011), Vol. 53, No. 11, p. 2251 [in Russian].

    Google Scholar 

  41. C. J. Brabec, N. S. Saricitci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).

    Article  CAS  Google Scholar 

  42. A. N. Aleshin, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 18, 17 (2006).

    Article  CAS  Google Scholar 

  43. A. J. Heeger, M. Pauchard-Strebel, M. Vehse, L. Edman, D. Moses, Patent No. 6828583 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Additional information

Original Russian Text © A.N. Aleshin, 2014, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2014, Vol. 56, No. 1, pp. 49–61.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N. Light-emitting transistor structures based on semiconducting polymers and inorganic nanoparticles. Polym. Sci. Ser. C 56, 47–58 (2014). https://doi.org/10.1134/S1811238214010019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238214010019

Keywords

Navigation