Skip to main content
Log in

Synthesis of Bis-GMA Grafted Co-Polymer of Acrylic–Itaconic Acid and its Composite

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

This study aims to develop a LED curable composite with higher compressive strength. We are reporting the synthesis of copolymers from acrylic and itaconic acid using simple free radical polymerization technique. The synthesized copolymer (acrylic-co-itaconic acid) was then grafted with bisphenol A-glycidyl methacrylate (Bis-GMA) using conventional condensation polymerization technique. The synthesized and purified copolymer was then characterized using FTIR, DSC, and TGA. We also synthesized glass ionomer powder using well established melt and quench method using various inorganic components, such as, SiO2, Al2O3, CaO, NaF, AlF3, P2O5, and Na3AlF6. The synthesized glass ionomer powder was characterized using powder X-ray diffraction and scanning electron microscopic techniques. Finally, we prepared the copolymer-glass ionomer composite by mixing the grafted copolymer and the glass ionomer with hydroxymethacrylate and camphorquinone. The resultant composite was cured with a LED light (440–480 nm) for 20 s and its surface morphology was studied using scanning electron microscopy. The compressive strength of the developed LED cured composite material and the commercially available Vitrebond (3M ESPE), a resin modified glass ionomer was compared using Universal Tensile Machine. It was found that the developed composite is 35% more strong in terms of compressive strength as compared to Vitrebond (3M ESPE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. D. S. R. Reddy, R. A. Kumar, S. M. Venkatesan, G. S. Narayan, D. Duraivel, and R. Indra, J. Conservative Dent. 17, 436 (2014).

  2. V. Chandrasekhar, J. Conservative Dent. 13, 23 (2010).

  3. E. C. Vouvoudi, D. S. Achilias, and I. D. Sideridou, Thermochim. Acta 599, 63 (2015).

    Article  CAS  Google Scholar 

  4. F. Bayindir, N. O. Ilday, Y. Z. Bayindir, O. Karatas, and A. Gurpinar, J Conservative Dent. 19, 46 (2016).

    Article  CAS  Google Scholar 

  5. A. Agrawal, N. U. Manwar, S. G. Hegde, M. Chandak, A. Ikhar, and A. Patel, J. Conservative Dent. 18, 136 (2015).

  6. S. Nandini, J. Conservative Dent. 13, 184 (2010).

  7. S. Shang, S. J. Huang, and R. A. Weiss, Polymer 50, 3119 (2009).

    Article  CAS  Google Scholar 

  8. R. V. Toms, M. S. Balashov, A. A. Shaova, A. Yu. Gerval’d, N. I. Prokopov, A. V. Plutalova, N. A. Grebenkina, and E. V. Chernikova, Polym. Sci., Ser. B 62, 102 (2020).

    Article  CAS  Google Scholar 

  9. M. R. Shaik, M. Kuniyil, M. Khan, N. Naushad Ahmad, A. Warthan, M. R. H. Siddiqui, and S. F. Adil, Molecules 21, 292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. T. Sehgal and S. Rattan, Int. J. Polym. Sci. 2010, 1(2010).

    Article  Google Scholar 

  11. Z. Wang, L. Wu, D. Zhou, P. Ji, X. Zhou, Y. Zhang, and P. He, Polym. Sci., Ser. B 62, 238 (2020).

    Article  CAS  Google Scholar 

  12. G. E. Damrawi, A. Behairy, and A. M. Abdelghany, New J. Glass Ceram. 8, 23 (2018).

    Article  Google Scholar 

  13. F. S. Sayyedan, M. Fathi, H. Edris, A. Doostmohammadi, V. Mortazavi, and F. Shirani, Dent. Res. J. 10, 452(2013).

    Google Scholar 

  14. N. Upadhya, K. K. Srinivasan, A. Vasudeva Adhikari, and L. N.Satapathy, Technologies 3, 58 (2015).

    Article  Google Scholar 

  15. F. Moztarzadeh, M. Keyanpour-Rad, and V. Shabani, Iran. Polym. J. 12, 211 (2003).

    CAS  Google Scholar 

  16. K. Kinoshita, Y. Takano, N. Ohkouchi, and S. Deguchi, ACS Omega 2, 2765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. H. Hsiao and Y. J. Chen, Eur. Polym. J. 38, 815 (2002).

    Article  CAS  Google Scholar 

  18. A. Stamboulis, R. V. Lawb, and R. G. Hill, Biomaterials 25, 3907 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. K. H. M. Tohamy, N. Abd El Sameea, T. M. Tiama, and I. Soliman, Egypt. J. Biophys. Biomed. Eng. 13, 53 (2012).

    Article  Google Scholar 

  20. M. Todica, R. Stefan, C. Pop, and L. Olar, Acta Phys. Pol., A 128, 128 (2015).

    Article  CAS  Google Scholar 

  21. J. Gaviria, C. G. Garcia, E. Velez, and J. Quijano, Model. Numer. Simul. Mater. Sci. 3, 149 (2013).

    Google Scholar 

  22. K. Buła, A. Palatyńska-Ulatowska, and L. Klimek, Arch. Mater. Sci. Eng. 103 (2), 75 (2020).

    Article  Google Scholar 

  23. L. S. Pintado, E. D. N. Torre, M. D. S. Selayaran, R. V. D. Carvalho, C. H. Zanchi, F. R. M. Leite, and A. Etges, J. Conservative Dent. 21, 74 (2018).

  24. L. T. Prieto, C. T. P. Araújo, J. J. A. Pierote, D. C. R. S. D. Oliveira, E. K. Coppini, and L. A. M. S. Paulillo, J. Conservative Dent. 21, 47 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayuri Gupta.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayuri Gupta, Tyagi, A.K. & Raula, M. Synthesis of Bis-GMA Grafted Co-Polymer of Acrylic–Itaconic Acid and its Composite. Polym. Sci. Ser. B 64, 506–517 (2022). https://doi.org/10.1134/S1560090422700130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700130

Navigation